using System; using DotRecast.Core.Numerics; namespace DotRecast.Detour { /** * Calculate the intersection between a polygon and a circle. A dodecagon is used as an approximation of the circle. */ public class DtStrictDtPolygonByCircleConstraint : IDtPolygonByCircleConstraint { private const int CIRCLE_SEGMENTS = 12; private static readonly float[] UnitCircle = MakeUnitCircle(); public static readonly IDtPolygonByCircleConstraint Shared = new DtStrictDtPolygonByCircleConstraint(); private DtStrictDtPolygonByCircleConstraint() { } private static float[] MakeUnitCircle() { var temp = new float[CIRCLE_SEGMENTS * 3]; for (int i = 0; i < CIRCLE_SEGMENTS; i++) { float a = i * MathF.PI * 2 / CIRCLE_SEGMENTS; temp[3 * i] = MathF.Cos(a); temp[3 * i + 1] = 0; temp[3 * i + 2] = -MathF.Sin(a); } return temp; } public float[] Apply(float[] verts, RcVec3f center, float radius) { float radiusSqr = radius * radius; int outsideVertex = -1; for (int pv = 0; pv < verts.Length; pv += 3) { if (RcVecUtils.Dist2DSqr(center, verts, pv) > radiusSqr) { outsideVertex = pv; break; } } if (outsideVertex == -1) { // polygon inside circle return verts; } float[] qCircle = Circle(center, radius); float[] intersection = DtConvexConvexIntersections.Intersect(verts, qCircle); if (intersection == null && DtUtils.PointInPolygon(center, verts, verts.Length / 3)) { // circle inside polygon return qCircle; } return intersection; } private float[] Circle(RcVec3f center, float radius) { float[] circle = new float[12 * 3]; for (int i = 0; i < CIRCLE_SEGMENTS * 3; i += 3) { circle[i] = UnitCircle[i] * radius + center.X; circle[i + 1] = center.Y; circle[i + 2] = UnitCircle[i + 2] * radius + center.Z; } return circle; } } }