DotRecastNetSim/src/DotRecast.Detour/StrictPolygonByCircleConstr...

71 lines
2.2 KiB
C#

using System;
using DotRecast.Core;
namespace DotRecast.Detour
{
using static DotRecast.Core.RcMath;
/**
* Calculate the intersection between a polygon and a circle. A dodecagon is used as an approximation of the circle.
*/
public class StrictPolygonByCircleConstraint : IPolygonByCircleConstraint
{
private const int CIRCLE_SEGMENTS = 12;
private static float[] unitCircle;
public float[] Aply(float[] verts, Vector3f center, float radius)
{
float radiusSqr = radius * radius;
int outsideVertex = -1;
for (int pv = 0; pv < verts.Length; pv += 3)
{
if (VDist2DSqr(center, verts, pv) > radiusSqr)
{
outsideVertex = pv;
break;
}
}
if (outsideVertex == -1)
{
// polygon inside circle
return verts;
}
float[] qCircle = Circle(center, radius);
float[] intersection = ConvexConvexIntersection.Intersect(verts, qCircle);
if (intersection == null && PointInPolygon(center, verts, verts.Length / 3))
{
// circle inside polygon
return qCircle;
}
return intersection;
}
private float[] Circle(Vector3f center, float radius)
{
if (unitCircle == null)
{
unitCircle = new float[CIRCLE_SEGMENTS * 3];
for (int i = 0; i < CIRCLE_SEGMENTS; i++)
{
double a = i * Math.PI * 2 / CIRCLE_SEGMENTS;
unitCircle[3 * i] = (float)Math.Cos(a);
unitCircle[3 * i + 1] = 0;
unitCircle[3 * i + 2] = (float)-Math.Sin(a);
}
}
float[] circle = new float[12 * 3];
for (int i = 0; i < CIRCLE_SEGMENTS * 3; i += 3)
{
circle[i] = unitCircle[i] * radius + center.x;
circle[i + 1] = center.y;
circle[i + 2] = unitCircle[i + 2] * radius + center.z;
}
return circle;
}
}
}