forked from bit/DotRecastNetSim
1007 lines
32 KiB
C#
1007 lines
32 KiB
C#
/*
|
|
Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
recast4j copyright (c) 2015-2019 Piotr Piastucki piotr@jtilia.org
|
|
DotRecast Copyright (c) 2023 Choi Ikpil ikpil@naver.com
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using System.Numerics;
|
|
|
|
namespace DotRecast.Core
|
|
{
|
|
public static class RecastMath
|
|
{
|
|
public const float EPS = 1e-4f;
|
|
private static readonly float EQUAL_THRESHOLD = Sqr(1.0f / 16384.0f);
|
|
|
|
public static float VDistSqr(Vector3f v1, float[] v2, int i)
|
|
{
|
|
float dx = v2[i] - v1.x;
|
|
float dy = v2[i + 1] - v1.y;
|
|
float dz = v2[i + 2] - v1.z;
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
public static float VDistSqr(Vector3f v1, Vector3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dy = v2.y - v1.y;
|
|
float dz = v2.z - v1.z;
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
public static float VDistSqr(float[] v, int i, int j)
|
|
{
|
|
float dx = v[i] - v[j];
|
|
float dy = v[i + 1] - v[j + 1];
|
|
float dz = v[i + 2] - v[j + 2];
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
public static Vector3f VCross(Vector3f v1, Vector3f v2)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.y * v2.z - v1.z * v2.y;
|
|
dest.y = v1.z * v2.x - v1.x * v2.z;
|
|
dest.z = v1.x * v2.y - v1.y * v2.x;
|
|
return dest;
|
|
}
|
|
|
|
public static float VDot(Vector3f v1, Vector3f v2)
|
|
{
|
|
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
|
}
|
|
|
|
public static float Sqr(float f)
|
|
{
|
|
return f * f;
|
|
}
|
|
|
|
public static float GetPathLen(float[] path, int npath)
|
|
{
|
|
float totd = 0;
|
|
for (int i = 0; i < npath - 1; ++i)
|
|
{
|
|
totd += (float)Math.Sqrt(VDistSqr(path, i * 3, (i + 1) * 3));
|
|
}
|
|
|
|
return totd;
|
|
}
|
|
|
|
|
|
|
|
public static float Step(float threshold, float v)
|
|
{
|
|
return v < threshold ? 0.0f : 1.0f;
|
|
}
|
|
|
|
public static float Clamp(float v, float min, float max)
|
|
{
|
|
return Math.Max(Math.Min(v, max), min);
|
|
}
|
|
|
|
public static int Clamp(int v, int min, int max)
|
|
{
|
|
return Math.Max(Math.Min(v, max), min);
|
|
}
|
|
|
|
public static float Lerp(float f, float g, float u)
|
|
{
|
|
return u * g + (1f - u) * f;
|
|
}
|
|
|
|
|
|
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
|
|
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
|
|
public static Vector3f VMad(Vector3f v1, Vector3f v2, float s)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.x + v2.x * s;
|
|
dest.y = v1.y + v2.y * s;
|
|
dest.z = v1.z + v2.z * s;
|
|
return dest;
|
|
}
|
|
|
|
public static Vector3f VMad(float[] v1, Vector3f v2, float s)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1[0] + v2.x * s;
|
|
dest.y = v1[1] + v2.y * s;
|
|
dest.z = v1[2] + v2.z * s;
|
|
return dest;
|
|
}
|
|
|
|
|
|
|
|
/// Performs a linear interpolation between two vectors. (@p v1 toward @p
|
|
/// v2)
|
|
/// @param[out] dest The result vector. [(x, y, x)]
|
|
/// @param[in] v1 The starting vector.
|
|
/// @param[in] v2 The destination vector.
|
|
/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
|
|
public static Vector3f VLerp(float[] verts, int v1, int v2, float t)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = verts[v1 + 0] + (verts[v2 + 0] - verts[v1 + 0]) * t;
|
|
dest.y = verts[v1 + 1] + (verts[v2 + 1] - verts[v1 + 1]) * t;
|
|
dest.z = verts[v1 + 2] + (verts[v2 + 2] - verts[v1 + 2]) * t;
|
|
return dest;
|
|
}
|
|
|
|
public static Vector3f VLerp(Vector3f v1, Vector3f v2, float t)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.x + (v2.x - v1.x) * t;
|
|
dest.y = v1.y + (v2.y - v1.y) * t;
|
|
dest.z = v1.z + (v2.z - v1.z) * t;
|
|
return dest;
|
|
}
|
|
|
|
|
|
public static Vector3f VSub(VectorPtr v1, VectorPtr v2)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.Get(0) - v2.Get(0);
|
|
dest.y = v1.Get(1) - v2.Get(1);
|
|
dest.z = v1.Get(2) - v2.Get(2);
|
|
return dest;
|
|
}
|
|
|
|
public static Vector3f VSub(Vector3f v1, Vector3f v2)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.x - v2.x;
|
|
dest.y = v1.y - v2.y;
|
|
dest.z = v1.z - v2.z;
|
|
return dest;
|
|
}
|
|
|
|
public static Vector3f VSub(Vector3f v1, VectorPtr v2)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.x - v2.Get(0);
|
|
dest.y = v1.y - v2.Get(1);
|
|
dest.z = v1.z - v2.Get(2);
|
|
return dest;
|
|
}
|
|
|
|
|
|
public static Vector3f VSub(Vector3f v1, float[] v2)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.x - v2[0];
|
|
dest.y = v1.y - v2[1];
|
|
dest.z = v1.z - v2[2];
|
|
return dest;
|
|
}
|
|
|
|
public static Vector3f VAdd(Vector3f v1, Vector3f v2)
|
|
{
|
|
Vector3f dest = new Vector3f();
|
|
dest.x = v1.x + v2.x;
|
|
dest.y = v1.y + v2.y;
|
|
dest.z = v1.z + v2.z;
|
|
return dest;
|
|
}
|
|
|
|
public static void VSet(ref Vector3f @out, float a, float b, float c)
|
|
{
|
|
@out.x = a;
|
|
@out.y = b;
|
|
@out.z = c;
|
|
}
|
|
|
|
public static void VCopy(float[] @out, Vector3f @in)
|
|
{
|
|
@out[0] = @in.x;
|
|
@out[1] = @in.y;
|
|
@out[2] = @in.z;
|
|
}
|
|
|
|
public static void VCopy(ref Vector3f @out, float[] @in)
|
|
{
|
|
@out.x = @in[0];
|
|
@out.y = @in[1];
|
|
@out.z = @in[2];
|
|
}
|
|
|
|
public static void VCopy(ref Vector3f @out, float[] @in, int i)
|
|
{
|
|
@out.x = @in[i];
|
|
@out.y = @in[i + 1];
|
|
@out.z = @in[i + 2];
|
|
}
|
|
|
|
public static void VMin(float[] @out, float[] @in, int i)
|
|
{
|
|
@out[0] = Math.Min(@out[0], @in[i]);
|
|
@out[1] = Math.Min(@out[1], @in[i + 1]);
|
|
@out[2] = Math.Min(@out[2], @in[i + 2]);
|
|
}
|
|
|
|
public static void VMin(ref Vector3f @out, float[] @in, int i)
|
|
{
|
|
@out.x = Math.Min(@out.x, @in[i]);
|
|
@out.y = Math.Min(@out.y, @in[i + 1]);
|
|
@out.z = Math.Min(@out.z, @in[i + 2]);
|
|
}
|
|
|
|
|
|
public static void VMax(float[] @out, float[] @in, int i)
|
|
{
|
|
@out[0] = Math.Max(@out[0], @in[i]);
|
|
@out[1] = Math.Max(@out[1], @in[i + 1]);
|
|
@out[2] = Math.Max(@out[2], @in[i + 2]);
|
|
}
|
|
|
|
public static void VMax(ref Vector3f @out, float[] @in, int i)
|
|
{
|
|
@out.x = Math.Max(@out.x, @in[i]);
|
|
@out.y = Math.Max(@out.y, @in[i + 1]);
|
|
@out.z = Math.Max(@out.z, @in[i + 2]);
|
|
}
|
|
|
|
|
|
/// Returns the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the two points.
|
|
public static float VDist(float[] v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return (float)Math.Sqrt(dx * dx + dy * dy + dz * dz);
|
|
}
|
|
|
|
public static float VDist(Vector3f v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1.x;
|
|
float dy = v2[1] - v1.y;
|
|
float dz = v2[2] - v1.z;
|
|
return (float)Math.Sqrt(dx * dx + dy * dy + dz * dz);
|
|
}
|
|
|
|
public static float VDist(Vector3f v1, Vector3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dy = v2.y - v1.y;
|
|
float dz = v2.z - v1.z;
|
|
return (float)Math.Sqrt(dx * dx + dy * dy + dz * dz);
|
|
}
|
|
|
|
|
|
|
|
/// Returns the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the two points.
|
|
public static float VDistSqr(float[] v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
|
|
|
|
/// Derives the square of the scalar length of the vector. (len * len)
|
|
/// @param[in] v The vector. [(x, y, z)]
|
|
/// @return The square of the scalar length of the vector.
|
|
public static float VLenSqr(float[] v)
|
|
{
|
|
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
|
|
}
|
|
|
|
public static float VLenSqr(Vector3f v)
|
|
{
|
|
return v.x * v.x + v.y * v.y + v.z * v.z;
|
|
}
|
|
|
|
|
|
public static float VLen(float[] v)
|
|
{
|
|
return (float)Math.Sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
}
|
|
|
|
public static float VLen(Vector3f v)
|
|
{
|
|
return (float)Math.Sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
|
|
}
|
|
|
|
|
|
public static float VDist(float[] v1, float[] verts, int i)
|
|
{
|
|
float dx = verts[i] - v1[0];
|
|
float dy = verts[i + 1] - v1[1];
|
|
float dz = verts[i + 2] - v1[2];
|
|
return (float)Math.Sqrt(dx * dx + dy * dy + dz * dz);
|
|
}
|
|
|
|
|
|
/// Derives the distance between the specified points on the xz-plane.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the point on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are
|
|
/// ignored.
|
|
public static float VDist2D(float[] v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dz = v2[2] - v1[2];
|
|
return (float)Math.Sqrt(dx * dx + dz * dz);
|
|
}
|
|
|
|
public static float VDist2D(Vector3f v1, Vector3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dz = v2.z - v1.z;
|
|
return (float)Math.Sqrt(dx * dx + dz * dz);
|
|
}
|
|
|
|
|
|
public static float VDist2DSqr(float[] v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dz = v2[2] - v1[2];
|
|
return dx * dx + dz * dz;
|
|
}
|
|
|
|
public static float VDist2DSqr(Vector3f v1, Vector3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dz = v2.z - v1.z;
|
|
return dx * dx + dz * dz;
|
|
}
|
|
|
|
|
|
public static float VDist2DSqr(Vector3f p, float[] verts, int i)
|
|
{
|
|
float dx = verts[i] - p.x;
|
|
float dz = verts[i + 2] - p.z;
|
|
return dx * dx + dz * dz;
|
|
}
|
|
|
|
/// Normalizes the vector.
|
|
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
|
public static void VNormalize(float[] v)
|
|
{
|
|
float d = (float)(1.0f / Math.Sqrt(Sqr(v[0]) + Sqr(v[1]) + Sqr(v[2])));
|
|
if (d != 0)
|
|
{
|
|
v[0] *= d;
|
|
v[1] *= d;
|
|
v[2] *= d;
|
|
}
|
|
}
|
|
|
|
public static void VNormalize(ref Vector3f v)
|
|
{
|
|
float d = (float)(1.0f / Math.Sqrt(Sqr(v.x) + Sqr(v.y) + Sqr(v.z)));
|
|
if (d != 0)
|
|
{
|
|
v.x *= d;
|
|
v.y *= d;
|
|
v.z *= d;
|
|
}
|
|
}
|
|
|
|
|
|
/// Performs a 'sloppy' colocation check of the specified points.
|
|
/// @param[in] p0 A point. [(x, y, z)]
|
|
/// @param[in] p1 A point. [(x, y, z)]
|
|
/// @return True if the points are considered to be at the same location.
|
|
///
|
|
/// Basically, this function will return true if the specified points are
|
|
/// close enough to eachother to be considered colocated.
|
|
public static bool VEqual(float[] p0, float[] p1)
|
|
{
|
|
return VEqual(p0, p1, EQUAL_THRESHOLD);
|
|
}
|
|
|
|
public static bool VEqual(Vector3f p0, Vector3f p1)
|
|
{
|
|
return VEqual(p0, p1, EQUAL_THRESHOLD);
|
|
}
|
|
|
|
|
|
public static bool VEqual(float[] p0, float[] p1, float thresholdSqr)
|
|
{
|
|
float d = VDistSqr(p0, p1);
|
|
return d < thresholdSqr;
|
|
}
|
|
|
|
public static bool VEqual(Vector3f p0, Vector3f p1, float thresholdSqr)
|
|
{
|
|
float d = VDistSqr(p0, p1);
|
|
return d < thresholdSqr;
|
|
}
|
|
|
|
|
|
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
|
|
/// @param[in] u A vector [(x, y, z)]
|
|
/// @param[in] v A vector [(x, y, z)]
|
|
/// @return The dot product on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are
|
|
/// ignored.
|
|
public static float VDot2D(float[] u, float[] v)
|
|
{
|
|
return u[0] * v[0] + u[2] * v[2];
|
|
}
|
|
|
|
public static float VDot2D(Vector3f u, Vector3f v)
|
|
{
|
|
return u.x * v.x + u.z * v.z;
|
|
}
|
|
|
|
|
|
public static float VDot2D(Vector3f u, float[] v, int vi)
|
|
{
|
|
return u.x * v[vi] + u.z * v[vi + 2];
|
|
}
|
|
|
|
/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
|
|
/// @param[in] u The LHV vector [(x, y, z)]
|
|
/// @param[in] v The RHV vector [(x, y, z)]
|
|
/// @return The dot product on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are
|
|
/// ignored.
|
|
public static float VPerp2D(float[] u, float[] v)
|
|
{
|
|
return u[2] * v[0] - u[0] * v[2];
|
|
}
|
|
|
|
public static float VPerp2D(Vector3f u, Vector3f v)
|
|
{
|
|
return u.z * v.x - u.x * v.z;
|
|
}
|
|
|
|
|
|
/// @}
|
|
/// @name Computational geometry helper functions.
|
|
/// @{
|
|
/// Derives the signed xz-plane area of the triangle ABC, or the
|
|
/// relationship of line AB to point C.
|
|
/// @param[in] a Vertex A. [(x, y, z)]
|
|
/// @param[in] b Vertex B. [(x, y, z)]
|
|
/// @param[in] c Vertex C. [(x, y, z)]
|
|
/// @return The signed xz-plane area of the triangle.
|
|
public static float TriArea2D(float[] verts, int a, int b, int c)
|
|
{
|
|
float abx = verts[b] - verts[a];
|
|
float abz = verts[b + 2] - verts[a + 2];
|
|
float acx = verts[c] - verts[a];
|
|
float acz = verts[c + 2] - verts[a + 2];
|
|
return acx * abz - abx * acz;
|
|
}
|
|
|
|
public static float TriArea2D(float[] a, float[] b, float[] c)
|
|
{
|
|
float abx = b[0] - a[0];
|
|
float abz = b[2] - a[2];
|
|
float acx = c[0] - a[0];
|
|
float acz = c[2] - a[2];
|
|
return acx * abz - abx * acz;
|
|
}
|
|
|
|
public static float TriArea2D(Vector3f a, Vector3f b, Vector3f c)
|
|
{
|
|
float abx = b.x - a.x;
|
|
float abz = b.z - a.z;
|
|
float acx = c.x - a.x;
|
|
float acz = c.z - a.z;
|
|
return acx * abz - abx * acz;
|
|
}
|
|
|
|
public static float TriArea2D(Vector3f a, float[] b, Vector3f c)
|
|
{
|
|
float abx = b[0] - a.x;
|
|
float abz = b[2] - a.z;
|
|
float acx = c.x - a.x;
|
|
float acz = c.z - a.z;
|
|
return acx * abz - abx * acz;
|
|
}
|
|
|
|
|
|
|
|
/// Determines if two axis-aligned bounding boxes overlap.
|
|
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
|
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
|
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
|
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
|
/// @return True if the two AABB's overlap.
|
|
/// @see dtOverlapBounds
|
|
public static bool OverlapQuantBounds(int[] amin, int[] amax, int[] bmin, int[] bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
/// Determines if two axis-aligned bounding boxes overlap.
|
|
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
|
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
|
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
|
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
|
/// @return True if the two AABB's overlap.
|
|
/// @see dtOverlapQuantBounds
|
|
public static bool OverlapBounds(float[] amin, float[] amax, float[] bmin, float[] bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0]> bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
public static bool OverlapBounds(Vector3f amin, Vector3f amax, Vector3f bmin, Vector3f bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin.x > bmax.x || amax.x < bmin.x) ? false : overlap;
|
|
overlap = (amin.y > bmax.y || amax.y < bmin.y) ? false : overlap;
|
|
overlap = (amin.z > bmax.z || amax.z < bmin.z) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
public static Tuple<float, float> DistancePtSegSqr2D(Vector3f pt, Vector3f p, Vector3f q)
|
|
{
|
|
float pqx = q.x - p.x;
|
|
float pqz = q.z - p.z;
|
|
float dx = pt.x - p.x;
|
|
float dz = pt.z - p.z;
|
|
float d = pqx * pqx + pqz * pqz;
|
|
float t = pqx * dx + pqz * dz;
|
|
if (d > 0)
|
|
{
|
|
t /= d;
|
|
}
|
|
|
|
if (t < 0)
|
|
{
|
|
t = 0;
|
|
}
|
|
else if (t > 1)
|
|
{
|
|
t = 1;
|
|
}
|
|
|
|
dx = p.x + t * pqx - pt.x;
|
|
dz = p.z + t * pqz - pt.z;
|
|
return Tuple.Create(dx * dx + dz * dz, t);
|
|
}
|
|
|
|
public static float? ClosestHeightPointTriangle(Vector3f p, Vector3f a, Vector3f b, Vector3f c)
|
|
{
|
|
Vector3f v0 = VSub(c, a);
|
|
Vector3f v1 = VSub(b, a);
|
|
Vector3f v2 = VSub(p, a);
|
|
|
|
// Compute scaled barycentric coordinates
|
|
float denom = v0.x * v1.z - v0.z * v1.x;
|
|
if (Math.Abs(denom) < EPS)
|
|
{
|
|
return null;
|
|
}
|
|
|
|
float u = v1.z * v2.x - v1.x * v2.z;
|
|
float v = v0.x * v2.z - v0.z * v2.x;
|
|
|
|
if (denom < 0)
|
|
{
|
|
denom = -denom;
|
|
u = -u;
|
|
v = -v;
|
|
}
|
|
|
|
// If point lies inside the triangle, return interpolated ycoord.
|
|
if (u >= 0.0f && v >= 0.0f && (u + v) <= denom)
|
|
{
|
|
float h = a.y + (v0.y * u + v1.y * v) / denom;
|
|
return h;
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// All points are projected onto the xz-plane, so the y-values are ignored.
|
|
public static bool PointInPolygon(Vector3f pt, float[] verts, int nverts)
|
|
{
|
|
// TODO: Replace pnpoly with triArea2D tests?
|
|
int i, j;
|
|
bool c = false;
|
|
for (i = 0, j = nverts - 1; i < nverts; j = i++)
|
|
{
|
|
int vi = i * 3;
|
|
int vj = j * 3;
|
|
if (((verts[vi + 2] > pt.z) != (verts[vj + 2] > pt.z)) && (pt.x < (verts[vj + 0] - verts[vi + 0])
|
|
* (pt.z - verts[vi + 2]) / (verts[vj + 2] - verts[vi + 2]) + verts[vi + 0]))
|
|
{
|
|
c = !c;
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
public static bool DistancePtPolyEdgesSqr(Vector3f pt, float[] verts, int nverts, float[] ed, float[] et)
|
|
{
|
|
// TODO: Replace pnpoly with triArea2D tests?
|
|
int i, j;
|
|
bool c = false;
|
|
for (i = 0, j = nverts - 1; i < nverts; j = i++)
|
|
{
|
|
int vi = i * 3;
|
|
int vj = j * 3;
|
|
if (((verts[vi + 2] > pt.z) != (verts[vj + 2] > pt.z)) && (pt.x < (verts[vj + 0] - verts[vi + 0])
|
|
* (pt.z - verts[vi + 2]) / (verts[vj + 2] - verts[vi + 2]) + verts[vi + 0]))
|
|
{
|
|
c = !c;
|
|
}
|
|
|
|
Tuple<float, float> edet = DistancePtSegSqr2D(pt, verts, vj, vi);
|
|
ed[j] = edet.Item1;
|
|
et[j] = edet.Item2;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
public static float[] ProjectPoly(Vector3f axis, float[] poly, int npoly)
|
|
{
|
|
float rmin, rmax;
|
|
rmin = rmax = VDot2D(axis, poly, 0);
|
|
for (int i = 1; i < npoly; ++i)
|
|
{
|
|
float d = VDot2D(axis, poly, i * 3);
|
|
rmin = Math.Min(rmin, d);
|
|
rmax = Math.Max(rmax, d);
|
|
}
|
|
|
|
return new float[] { rmin, rmax };
|
|
}
|
|
|
|
public static bool OverlapRange(float amin, float amax, float bmin, float bmax, float eps)
|
|
{
|
|
return ((amin + eps) > bmax || (amax - eps) < bmin) ? false : true;
|
|
}
|
|
|
|
const float eps = 1e-4f;
|
|
|
|
/// @par
|
|
///
|
|
/// All vertices are projected onto the xz-plane, so the y-values are ignored.
|
|
public static bool OverlapPolyPoly2D(float[] polya, int npolya, float[] polyb, int npolyb)
|
|
{
|
|
for (int i = 0, j = npolya - 1; i < npolya; j = i++)
|
|
{
|
|
int va = j * 3;
|
|
int vb = i * 3;
|
|
|
|
Vector3f n = Vector3f.Of(polya[vb + 2] - polya[va + 2], 0, -(polya[vb + 0] - polya[va + 0]));
|
|
|
|
float[] aminmax = ProjectPoly(n, polya, npolya);
|
|
float[] bminmax = ProjectPoly(n, polyb, npolyb);
|
|
if (!OverlapRange(aminmax[0], aminmax[1], bminmax[0], bminmax[1], eps))
|
|
{
|
|
// Found separating axis
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (int i = 0, j = npolyb - 1; i < npolyb; j = i++)
|
|
{
|
|
int va = j * 3;
|
|
int vb = i * 3;
|
|
|
|
Vector3f n = Vector3f.Of(polyb[vb + 2] - polyb[va + 2], 0, -(polyb[vb + 0] - polyb[va + 0]));
|
|
|
|
float[] aminmax = ProjectPoly(n, polya, npolya);
|
|
float[] bminmax = ProjectPoly(n, polyb, npolyb);
|
|
if (!OverlapRange(aminmax[0], aminmax[1], bminmax[0], bminmax[1], eps))
|
|
{
|
|
// Found separating axis
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns a random point in a convex polygon.
|
|
// Adapted from Graphics Gems article.
|
|
public static Vector3f RandomPointInConvexPoly(float[] pts, int npts, float[] areas, float s, float t)
|
|
{
|
|
// Calc triangle araes
|
|
float areasum = 0.0f;
|
|
for (int i = 2; i < npts; i++)
|
|
{
|
|
areas[i] = TriArea2D(pts, 0, (i - 1) * 3, i * 3);
|
|
areasum += Math.Max(0.001f, areas[i]);
|
|
}
|
|
|
|
// Find sub triangle weighted by area.
|
|
float thr = s * areasum;
|
|
float acc = 0.0f;
|
|
float u = 1.0f;
|
|
int tri = npts - 1;
|
|
for (int i = 2; i < npts; i++)
|
|
{
|
|
float dacc = areas[i];
|
|
if (thr >= acc && thr < (acc + dacc))
|
|
{
|
|
u = (thr - acc) / dacc;
|
|
tri = i;
|
|
break;
|
|
}
|
|
|
|
acc += dacc;
|
|
}
|
|
|
|
float v = (float)Math.Sqrt(t);
|
|
|
|
float a = 1 - v;
|
|
float b = (1 - u) * v;
|
|
float c = u * v;
|
|
int pa = 0;
|
|
int pb = (tri - 1) * 3;
|
|
int pc = tri * 3;
|
|
|
|
return new Vector3f()
|
|
{
|
|
x = a * pts[pa] + b * pts[pb] + c * pts[pc],
|
|
y = a * pts[pa + 1] + b * pts[pb + 1] + c * pts[pc + 1],
|
|
z = a * pts[pa + 2] + b * pts[pb + 2] + c * pts[pc + 2]
|
|
};
|
|
}
|
|
|
|
public static int NextPow2(int v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v++;
|
|
return v;
|
|
}
|
|
|
|
public static int Ilog2(int v)
|
|
{
|
|
int r;
|
|
int shift;
|
|
r = (v > 0xffff ? 1 : 0) << 4;
|
|
v >>= r;
|
|
shift = (v > 0xff ? 1 : 0) << 3;
|
|
v >>= shift;
|
|
r |= shift;
|
|
shift = (v > 0xf ? 1 : 0) << 2;
|
|
v >>= shift;
|
|
r |= shift;
|
|
shift = (v > 0x3 ? 1 : 0) << 1;
|
|
v >>= shift;
|
|
r |= shift;
|
|
r |= (v >> 1);
|
|
return r;
|
|
}
|
|
|
|
public class IntersectResult
|
|
{
|
|
public bool intersects;
|
|
public float tmin;
|
|
public float tmax = 1f;
|
|
public int segMin = -1;
|
|
public int segMax = -1;
|
|
}
|
|
|
|
public static IntersectResult IntersectSegmentPoly2D(Vector3f p0, Vector3f p1, float[] verts, int nverts)
|
|
{
|
|
IntersectResult result = new IntersectResult();
|
|
float EPS = 0.000001f;
|
|
var dir = VSub(p1, p0);
|
|
|
|
var p0v = p0;
|
|
for (int i = 0, j = nverts - 1; i < nverts; j = i++)
|
|
{
|
|
VectorPtr vpj = new VectorPtr(verts, j * 3);
|
|
var edge = VSub(new VectorPtr(verts, i * 3), vpj);
|
|
var diff = VSub(p0v, vpj);
|
|
float n = VPerp2D(edge, diff);
|
|
float d = VPerp2D(dir, edge);
|
|
if (Math.Abs(d) < EPS)
|
|
{
|
|
// S is nearly parallel to this edge
|
|
if (n < 0)
|
|
{
|
|
return result;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
float t = n / d;
|
|
if (d < 0)
|
|
{
|
|
// segment S is entering across this edge
|
|
if (t > result.tmin)
|
|
{
|
|
result.tmin = t;
|
|
result.segMin = j;
|
|
// S enters after leaving polygon
|
|
if (result.tmin > result.tmax)
|
|
{
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// segment S is leaving across this edge
|
|
if (t < result.tmax)
|
|
{
|
|
result.tmax = t;
|
|
result.segMax = j;
|
|
// S leaves before entering polygon
|
|
if (result.tmax < result.tmin)
|
|
{
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
result.intersects = true;
|
|
return result;
|
|
}
|
|
|
|
public static Tuple<float, float> DistancePtSegSqr2D(Vector3f pt, SegmentVert verts, int p, int q)
|
|
{
|
|
float pqx = verts[q + 0] - verts[p + 0];
|
|
float pqz = verts[q + 2] - verts[p + 2];
|
|
float dx = pt.x - verts[p + 0];
|
|
float dz = pt.z - verts[p + 2];
|
|
float d = pqx * pqx + pqz * pqz;
|
|
float t = pqx * dx + pqz * dz;
|
|
if (d > 0)
|
|
{
|
|
t /= d;
|
|
}
|
|
|
|
if (t < 0)
|
|
{
|
|
t = 0;
|
|
}
|
|
else if (t > 1)
|
|
{
|
|
t = 1;
|
|
}
|
|
|
|
dx = verts[p + 0] + t * pqx - pt.x;
|
|
dz = verts[p + 2] + t * pqz - pt.z;
|
|
return Tuple.Create(dx * dx + dz * dz, t);
|
|
}
|
|
|
|
|
|
public static Tuple<float, float> DistancePtSegSqr2D(Vector3f pt, float[] verts, int p, int q)
|
|
{
|
|
float pqx = verts[q + 0] - verts[p + 0];
|
|
float pqz = verts[q + 2] - verts[p + 2];
|
|
float dx = pt.x - verts[p + 0];
|
|
float dz = pt.z - verts[p + 2];
|
|
float d = pqx * pqx + pqz * pqz;
|
|
float t = pqx * dx + pqz * dz;
|
|
if (d > 0)
|
|
{
|
|
t /= d;
|
|
}
|
|
|
|
if (t < 0)
|
|
{
|
|
t = 0;
|
|
}
|
|
else if (t > 1)
|
|
{
|
|
t = 1;
|
|
}
|
|
|
|
dx = verts[p + 0] + t * pqx - pt.x;
|
|
dz = verts[p + 2] + t * pqz - pt.z;
|
|
return Tuple.Create(dx * dx + dz * dz, t);
|
|
}
|
|
|
|
public static int OppositeTile(int side)
|
|
{
|
|
return (side + 4) & 0x7;
|
|
}
|
|
|
|
public static float VperpXZ(float[] a, float[] b)
|
|
{
|
|
return a[0] * b[2] - a[2] * b[0];
|
|
}
|
|
|
|
public static float VperpXZ(Vector3f a, Vector3f b)
|
|
{
|
|
return a.x * b.z - a.z * b.x;
|
|
}
|
|
|
|
public static Tuple<float, float>? IntersectSegSeg2D(Vector3f ap, Vector3f aq, Vector3f bp, Vector3f bq)
|
|
{
|
|
Vector3f u = VSub(aq, ap);
|
|
Vector3f v = VSub(bq, bp);
|
|
Vector3f w = VSub(ap, bp);
|
|
float d = VperpXZ(u, v);
|
|
if (Math.Abs(d) < 1e-6f)
|
|
{
|
|
return null;
|
|
}
|
|
|
|
float s = VperpXZ(v, w) / d;
|
|
float t = VperpXZ(u, w) / d;
|
|
return Tuple.Create(s, t);
|
|
}
|
|
|
|
public static Vector3f VScale(Vector3f @in, float scale)
|
|
{
|
|
var @out = new Vector3f();
|
|
@out.x = @in.x * scale;
|
|
@out.y = @in.y * scale;
|
|
@out.z = @in.z * scale;
|
|
return @out;
|
|
}
|
|
|
|
|
|
/// Checks that the specified vector's components are all finite.
|
|
/// @param[in] v A point. [(x, y, z)]
|
|
/// @return True if all of the point's components are finite, i.e. not NaN
|
|
/// or any of the infinities.
|
|
public static bool VIsFinite(float[] v)
|
|
{
|
|
return float.IsFinite(v[0]) && float.IsFinite(v[1]) && float.IsFinite(v[2]);
|
|
}
|
|
|
|
public static bool VIsFinite(Vector3f v)
|
|
{
|
|
return float.IsFinite(v.x) && float.IsFinite(v.y) && float.IsFinite(v.z);
|
|
}
|
|
|
|
/// Checks that the specified vector's 2D components are finite.
|
|
/// @param[in] v A point. [(x, y, z)]
|
|
public static bool VIsFinite2D(float[] v)
|
|
{
|
|
return float.IsFinite(v[0]) && float.IsFinite(v[2]);
|
|
}
|
|
|
|
public static bool VIsFinite2D(Vector3f v)
|
|
{
|
|
return float.IsFinite(v.x) && float.IsFinite(v.z);
|
|
}
|
|
}
|
|
}
|