using UnityEngine;
using System.Collections;
using MoreMountains.Tools;
using System.Collections.Generic;
using System;
namespace MoreMountains.Tools
{
///
/// This class will create a cone of vision defined by an angle and a distance around a point. It will look for targets within that field, and draw a mesh to show the cone of vision
/// initially inspired by this great tutorial by Sebastian Lague : https://www.youtube.com/watch?v=rQG9aUWarwE - check out his tutorials, they're amazing!
///
[Serializable]
[AddComponentMenu("More Mountains/Tools/Vision/MMConeOfVision")]
public class MMConeOfVision : MonoBehaviour
{
///
/// A struct to store raycast data
///
public struct RaycastData
{
public bool Hit;
public Vector3 Point;
public float Distance;
public float Angle;
public RaycastData(bool hit, Vector3 point, float distance, float angle)
{
Hit = hit;
Point = point;
Distance = distance;
Angle = angle;
}
}
public struct MeshEdgePosition
{
public Vector3 PointA;
public Vector3 PointB;
public MeshEdgePosition(Vector3 pointA, Vector3 pointB)
{
PointA = pointA;
PointB = pointB;
}
}
[Header("Vision")]
public LayerMask ObstacleMask;
public float VisionRadius = 5f;
[Range(0f, 360f)]
public float VisionAngle = 20f;
[MMReadOnly]
public Vector3 Direction;
[MMReadOnly]
public Vector3 EulerAngles;
public Vector3 Offset;
[Header("Target scanning")]
public bool ShouldScanForTargets = true;
public LayerMask TargetMask;
public float ScanFrequencyInSeconds = 1f;
[MMReadOnly]
public List VisibleTargets = new List();
[Header("Mesh")]
public float MeshDensity = 0.2f;
public int EdgePrecision = 3;
public float EdgeThreshold = 0.5f;
public MeshFilter VisionMeshFilter;
protected Mesh _visionMesh;
protected Collider[] _targetsWithinDistance;
protected Transform _target;
protected Vector3 _directionToTarget;
protected float _distanceToTarget;
protected float _lastScanTimestamp;
public Vector3 Center { get { return this.transform.position + Offset; } }
protected virtual void Awake()
{
_visionMesh = new Mesh();
VisionMeshFilter.mesh = _visionMesh;
}
protected virtual void LateUpdate()
{
if ((Time.time - _lastScanTimestamp > ScanFrequencyInSeconds) && ShouldScanForTargets)
{
ScanForTargets();
}
DrawMesh();
}
public virtual void SetDirectionAndAngles(Vector3 direction, Vector3 eulerAngles)
{
Direction = direction;
EulerAngles = eulerAngles;
}
protected virtual void ScanForTargets()
{
_lastScanTimestamp = Time.time;
VisibleTargets.Clear();
_targetsWithinDistance = Physics.OverlapSphere(Center, VisionRadius, TargetMask);
foreach (Collider collider in _targetsWithinDistance)
{
_target = collider.transform;
_directionToTarget = (_target.position - Center).normalized;
if (Vector3.Angle(Direction, _directionToTarget) < VisionAngle / 2f)
{
_distanceToTarget = Vector3.Distance(Center, _target.position);
bool duplicate = false;
foreach(Transform visibleTarget in VisibleTargets)
{
if (visibleTarget == _target)
{
duplicate = true;
}
}
if ((!Physics.Raycast(Center, _directionToTarget, _distanceToTarget, ObstacleMask)) && !duplicate)
{
VisibleTargets.Add(_target);
}
}
}
}
protected virtual void DrawMesh()
{
int steps = Mathf.RoundToInt(MeshDensity * VisionAngle);
float stepsAngle = VisionAngle / steps;
List viewPoints = new List();
RaycastData oldViewCast = new RaycastData();
for (int i = 0; i <= steps; i++)
{
float angle = stepsAngle * i + EulerAngles.y - VisionAngle / 2f;
RaycastData viewCast = RaycastAtAngle(angle);
if (i > 0)
{
bool thresholdExceeded = Mathf.Abs(oldViewCast.Distance - viewCast.Distance) > EdgeThreshold;
if ((oldViewCast.Hit != viewCast.Hit)
|| (oldViewCast.Hit && viewCast.Hit && thresholdExceeded))
{
MeshEdgePosition edge = FindMeshEdgePosition(oldViewCast, viewCast);
if (edge.PointA != Vector3.zero)
{
viewPoints.Add(edge.PointA);
}
if (edge.PointB != Vector3.zero)
{
viewPoints.Add(edge.PointB);
}
}
}
viewPoints.Add(viewCast.Point);
oldViewCast = viewCast;
}
int numberOfVertices = viewPoints.Count + 1;
Vector3[] vertices = new Vector3[numberOfVertices];
int[] triangles = new int[(numberOfVertices - 2) * 3];
vertices[0] = Vector3.zero + Offset;
for (int i = 0; i < numberOfVertices - 1; i++)
{
vertices[i + 1] = this.transform.InverseTransformPoint(viewPoints[i]);
if (i < numberOfVertices - 2)
{
triangles[i * 3] = 0;
triangles[i * 3 + 1] = i + 1;
triangles[i * 3 + 2] = i + 2;
}
}
_visionMesh.Clear();
_visionMesh.vertices = vertices;
_visionMesh.triangles = triangles;
_visionMesh.RecalculateNormals();
}
MeshEdgePosition FindMeshEdgePosition(RaycastData minimumViewCast, RaycastData maximumViewCast)
{
float minAngle = minimumViewCast.Angle;
float maxAngle = maximumViewCast.Angle;
Vector3 minPoint = minimumViewCast.Point;
Vector3 maxPoint = maximumViewCast.Point;
for (int i = 0; i < EdgePrecision; i++)
{
float angle = (minAngle + maxAngle) / 2;
RaycastData newViewCast = RaycastAtAngle(angle);
bool thresholdExceeded = Mathf.Abs(minimumViewCast.Distance - newViewCast.Distance) > EdgeThreshold;
if (newViewCast.Hit == minimumViewCast.Hit && !thresholdExceeded)
{
minAngle = angle;
minPoint = newViewCast.Point;
}
else
{
maxAngle = angle;
maxPoint = newViewCast.Point;
}
}
return new MeshEdgePosition(minPoint, maxPoint);
}
RaycastData RaycastAtAngle(float angle)
{
Vector3 direction = MMMaths.DirectionFromAngle(angle, 0f);
RaycastHit hit;
if (Physics.Raycast(Center, direction, out hit, VisionRadius, ObstacleMask))
{
return new RaycastData(true, hit.point, hit.distance, angle);
}
else
{
return new RaycastData(false, Center + direction * VisionRadius, VisionRadius, angle);
}
}
}
}