using System; using System.IO; using System.Collections.Generic; using System.Security.Cryptography; /// /// Implements a 32-bit CRC hash algorithm compatible with Zip etc. /// /// /// Crc32 should only be used for backward compatibility with older file formats /// and algorithms. It is not secure enough for new applications. /// If you need to call multiple times for the same data either use the HashAlgorithm /// interface or remember that the result of one Compute call needs to be ~ (XOR) before /// being passed in as the seed for the next Compute call. /// public sealed class Crc32 : HashAlgorithm { public const UInt32 DefaultPolynomial = 0xedb88320u; public const UInt32 DefaultSeed = 0xffffffffu; private static UInt32[] defaultTable; private readonly UInt32 seed; private readonly UInt32[] table; private UInt32 hash; public Crc32() : this(DefaultPolynomial, DefaultSeed) { } public Crc32(UInt32 polynomial, UInt32 seed) { table = InitializeTable(polynomial); this.seed = hash = seed; } public override void Initialize() { hash = seed; } protected override void HashCore(byte[] buffer, int start, int length) { hash = CalculateHash(table, hash, buffer, start, length); } protected override byte[] HashFinal() { var hashBuffer = UInt32ToBigEndianBytes(~hash); HashValue = hashBuffer; return hashBuffer; } public override int HashSize { get { return 32; } } public static UInt32 Compute(byte[] buffer, int buffer_len) { return Compute(DefaultSeed, buffer, buffer_len); } public static UInt32 Compute(UInt32 seed, byte[] buffer, int buffer_len) { return Compute(DefaultPolynomial, seed, buffer, buffer_len); } public static UInt32 Compute(UInt32 polynomial, UInt32 seed, byte[] buffer, int buffer_len) { return ~CalculateHash(InitializeTable(polynomial), seed, buffer, 0, buffer_len); } public static UInt32 Compute(Stream s) { return Compute(DefaultSeed, s); } public static UInt32 Compute(UInt32 seed, Stream s) { return Compute(DefaultPolynomial, seed, s); } public static UInt32 Compute(UInt32 polynomial, UInt32 seed, Stream s) { return ~CalculateHash(InitializeTable(polynomial), seed, s); } private static UInt32[] InitializeTable(UInt32 polynomial) { if (polynomial == DefaultPolynomial && defaultTable != null) return defaultTable; var createTable = new UInt32[256]; for (var i = 0; i < 256; i++) { var entry = (UInt32)i; for (var j = 0; j < 8; j++) if ((entry & 1) == 1) entry = (entry >> 1) ^ polynomial; else entry = entry >> 1; createTable[i] = entry; } if (polynomial == DefaultPolynomial) defaultTable = createTable; return createTable; } private static UInt32 CalculateHash(UInt32[] table, UInt32 seed, byte[] buffer, int start, int size) { var crc = seed; for (var i = start; i < size - start; i++) crc = (crc >> 8) ^ table[buffer[i] ^ crc & 0xff]; return crc; } private static UInt32 CalculateHash(UInt32[] table, UInt32 seed, Stream s) { var crc = seed; byte[] bytes = new byte[4 * 1024]; int bytes_to_read = (int)(s.Length - s.Position); while(bytes_to_read > 0) { int n = s.Read(bytes, 0, bytes.Length); bytes_to_read -= n; crc = CalculateHash(table, crc, bytes, 0, n); } return crc; } public static UInt32 BeginHash() { var crc = DefaultSeed; return crc; } public static UInt32 AddHash(UInt32 crc, byte data) { UInt32[] table = InitializeTable(DefaultPolynomial); crc = (crc >> 8) ^ table[data ^ crc & 0xff]; return crc; } public static UInt32 AddHash(UInt32 crc, short data) { crc = AddHash(crc, (byte)(data & 0xFF)); crc = AddHash(crc, (byte)((data >> 8) & 0xFF)); return crc; } public static UInt32 AddHash(UInt32 crc, UInt32 data) { crc = AddHash(crc, (byte)(data & 0xFF)); crc = AddHash(crc, (byte)((data >> 8) & 0xFF)); crc = AddHash(crc, (byte)((data >> 16) & 0xFF)); crc = AddHash(crc, (byte)((data >> 24) & 0xFF)); return crc; } public static UInt32 FinalizeHash(UInt32 crc) { return ~crc; } //Convenience shortcut public static uint CalcChecksum(uint data1, uint data2) { uint checksum = Crc32.BeginHash(); checksum = Crc32.AddHash(checksum, data1); checksum = Crc32.AddHash(checksum, data2); checksum = Crc32.FinalizeHash(checksum); return checksum; } //Convenience shortcut public static uint CalcChecksum(ulong data1, ulong data2) { uint checksum = Crc32.BeginHash(); checksum = Crc32.AddHash(checksum, (uint)(data1 >> 32)); checksum = Crc32.AddHash(checksum, (uint)(data1 & 0xFFFFFFFFL)); checksum = Crc32.AddHash(checksum, (uint)(data2 >> 32)); checksum = Crc32.AddHash(checksum, (uint)(data2 & 0xFFFFFFFFL)); checksum = Crc32.FinalizeHash(checksum); return checksum; } //Convenience shortcut public static uint CalcChecksum(ulong data) { uint checksum = Crc32.BeginHash(); checksum = Crc32.AddHash(checksum, (uint)(data >> 32)); checksum = Crc32.AddHash(checksum, (uint)(data & 0xFFFFFFFFL)); checksum = Crc32.FinalizeHash(checksum); return checksum; } //Convenience shortcut public static uint CalcChecksum(long data) { return CalcChecksum((ulong)data); } private static byte[] UInt32ToBigEndianBytes(UInt32 uint32) { var result = BitConverter.GetBytes(uint32); if (BitConverter.IsLittleEndian) Array.Reverse(result); return result; } } public sealed class Adler32 { // largest prime smaller than 65536 private const int BASE = 65521; // NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 private const int NMAX = 5552; static public long Compute(long adler, byte[] buf, int index, int len) { if (buf == null) { return 1L; } long s1 = adler & 0xffff; long s2 = (adler >> 16) & 0xffff; int k; while (len > 0) { k = len < NMAX?len:NMAX; len -= k; while (k >= 16) { s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; s1 += (buf[index++] & 0xff); s2 += s1; k -= 16; } if (k != 0) { do { s1 += (buf[index++] & 0xff); s2 += s1; } while (--k != 0); } s1 %= BASE; s2 %= BASE; } return (s2 << 16) | s1; } static public long Compute(long adler, Stream buf) { if (buf == null) { return 1L; } long pos = buf.Position; long s1 = adler & 0xffff; long s2 = (adler >> 16) & 0xffff; int k; int len = (int)(buf.Length - pos); while (len > 0) { k = len < NMAX ? len : NMAX; len -= k; while (k >= 16) { s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; s1 += (buf.ReadByte() & 0xff); s2 += s1; k -= 16; } if (k != 0) { do { s1 += (buf.ReadByte() & 0xff); s2 += s1; } while (--k != 0); } s1 %= BASE; s2 %= BASE; } buf.Position = pos; return (s2 << 16) | s1; } }