forked from mirror/DotRecast
71 lines
2.2 KiB
C#
71 lines
2.2 KiB
C#
|
using System;
|
|||
|
using DotRecast.Core;
|
|||
|
|
|||
|
namespace DotRecast.Detour
|
|||
|
{
|
|||
|
using static DotRecast.Core.RecastMath;
|
|||
|
|
|||
|
/**
|
|||
|
* Calculate the intersection between a polygon and a circle. A dodecagon is used as an approximation of the circle.
|
|||
|
*/
|
|||
|
public class StrictPolygonByCircleConstraint : IPolygonByCircleConstraint
|
|||
|
{
|
|||
|
private const int CIRCLE_SEGMENTS = 12;
|
|||
|
private static float[] unitCircle;
|
|||
|
|
|||
|
public float[] Aply(float[] verts, Vector3f center, float radius)
|
|||
|
{
|
|||
|
float radiusSqr = radius * radius;
|
|||
|
int outsideVertex = -1;
|
|||
|
for (int pv = 0; pv < verts.Length; pv += 3)
|
|||
|
{
|
|||
|
if (VDist2DSqr(center, verts, pv) > radiusSqr)
|
|||
|
{
|
|||
|
outsideVertex = pv;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (outsideVertex == -1)
|
|||
|
{
|
|||
|
// polygon inside circle
|
|||
|
return verts;
|
|||
|
}
|
|||
|
|
|||
|
float[] qCircle = Circle(center, radius);
|
|||
|
float[] intersection = ConvexConvexIntersection.Intersect(verts, qCircle);
|
|||
|
if (intersection == null && PointInPolygon(center, verts, verts.Length / 3))
|
|||
|
{
|
|||
|
// circle inside polygon
|
|||
|
return qCircle;
|
|||
|
}
|
|||
|
|
|||
|
return intersection;
|
|||
|
}
|
|||
|
|
|||
|
private float[] Circle(Vector3f center, float radius)
|
|||
|
{
|
|||
|
if (unitCircle == null)
|
|||
|
{
|
|||
|
unitCircle = new float[CIRCLE_SEGMENTS * 3];
|
|||
|
for (int i = 0; i < CIRCLE_SEGMENTS; i++)
|
|||
|
{
|
|||
|
double a = i * Math.PI * 2 / CIRCLE_SEGMENTS;
|
|||
|
unitCircle[3 * i] = (float)Math.Cos(a);
|
|||
|
unitCircle[3 * i + 1] = 0;
|
|||
|
unitCircle[3 * i + 2] = (float)-Math.Sin(a);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
float[] circle = new float[12 * 3];
|
|||
|
for (int i = 0; i < CIRCLE_SEGMENTS * 3; i += 3)
|
|||
|
{
|
|||
|
circle[i] = unitCircle[i] * radius + center.x;
|
|||
|
circle[i + 1] = center.y;
|
|||
|
circle[i + 2] = unitCircle[i + 2] * radius + center.z;
|
|||
|
}
|
|||
|
|
|||
|
return circle;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|