/* recast4j copyright (c) 2015-2019 Piotr Piastucki piotr@jtilia.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ using System; using DotRecast.Core; using DotRecast.Core.Numerics; namespace DotRecast.Recast.Demo.Draw; public static class GLU { public static RcMatrix4x4f GluPerspective(float fovy, float aspect, float near, float far) { var projectionMatrix = new RcMatrix4x4f(); GlhPerspectivef2(ref projectionMatrix, fovy, aspect, near, far); //GlLoadMatrixf(projectionMatrix); return projectionMatrix; } public static void GlhPerspectivef2(ref RcMatrix4x4f matrix, float fovyInDegrees, float aspectRatio, float znear, float zfar) { float ymax, xmax; ymax = (float)(znear * Math.Tan(fovyInDegrees * Math.PI / 360.0)); xmax = ymax * aspectRatio; GlhFrustumf2(ref matrix, -xmax, xmax, -ymax, ymax, znear, zfar); } private static void GlhFrustumf2(ref RcMatrix4x4f matrix, float left, float right, float bottom, float top, float znear, float zfar) { float temp, temp2, temp3, temp4; temp = 2.0f * znear; temp2 = right - left; temp3 = top - bottom; temp4 = zfar - znear; matrix.M11 = temp / temp2; matrix.M12 = 0.0f; matrix.M13 = 0.0f; matrix.M14 = 0.0f; matrix.M21 = 0.0f; matrix.M22 = temp / temp3; matrix.M23 = 0.0f; matrix.M24 = 0.0f; matrix.M31 = (right + left) / temp2; matrix.M32 = (top + bottom) / temp3; matrix.M33 = (-zfar - znear) / temp4; matrix.M34 = -1.0f; matrix.M41 = 0.0f; matrix.M42 = 0.0f; matrix.M43 = (-temp * zfar) / temp4; matrix.M44 = 0.0f; } public static int GlhUnProjectf(float winx, float winy, float winz, float[] modelview, float[] projection, int[] viewport, ref RcVec3f objectCoordinate) { // Transformation matrices float[] m = new float[16], A = new float[16]; float[] @in = new float[4], @out = new float[4]; // Calculation for inverting a matrix, compute projection x modelview // and store in A[16] MultiplyMatrices4by4OpenGL_FLOAT(A, projection, modelview); // Now compute the inverse of matrix A if (GlhInvertMatrixf2(A, m) == 0) return 0; // Transformation of normalized coordinates between -1 and 1 @in[0] = (winx - viewport[0]) / viewport[2] * 2.0f - 1.0f; @in[1] = (winy - viewport[1]) / viewport[3] * 2.0f - 1.0f; @in[2] = 2.0f * winz - 1.0f; @in[3] = 1.0f; // Objects coordinates MultiplyMatrixByVector4by4OpenGL_FLOAT(@out, m, @in); if (@out[3] == 0.0) return 0; @out[3] = 1.0f / @out[3]; objectCoordinate.X = @out[0] * @out[3]; objectCoordinate.Y = @out[1] * @out[3]; objectCoordinate.Z = @out[2] * @out[3]; return 1; } static void MultiplyMatrices4by4OpenGL_FLOAT(float[] result, float[] matrix1, float[] matrix2) { result[0] = matrix1[0] * matrix2[0] + matrix1[4] * matrix2[1] + matrix1[8] * matrix2[2] + matrix1[12] * matrix2[3]; result[4] = matrix1[0] * matrix2[4] + matrix1[4] * matrix2[5] + matrix1[8] * matrix2[6] + matrix1[12] * matrix2[7]; result[8] = matrix1[0] * matrix2[8] + matrix1[4] * matrix2[9] + matrix1[8] * matrix2[10] + matrix1[12] * matrix2[11]; result[12] = matrix1[0] * matrix2[12] + matrix1[4] * matrix2[13] + matrix1[8] * matrix2[14] + matrix1[12] * matrix2[15]; result[1] = matrix1[1] * matrix2[0] + matrix1[5] * matrix2[1] + matrix1[9] * matrix2[2] + matrix1[13] * matrix2[3]; result[5] = matrix1[1] * matrix2[4] + matrix1[5] * matrix2[5] + matrix1[9] * matrix2[6] + matrix1[13] * matrix2[7]; result[9] = matrix1[1] * matrix2[8] + matrix1[5] * matrix2[9] + matrix1[9] * matrix2[10] + matrix1[13] * matrix2[11]; result[13] = matrix1[1] * matrix2[12] + matrix1[5] * matrix2[13] + matrix1[9] * matrix2[14] + matrix1[13] * matrix2[15]; result[2] = matrix1[2] * matrix2[0] + matrix1[6] * matrix2[1] + matrix1[10] * matrix2[2] + matrix1[14] * matrix2[3]; result[6] = matrix1[2] * matrix2[4] + matrix1[6] * matrix2[5] + matrix1[10] * matrix2[6] + matrix1[14] * matrix2[7]; result[10] = matrix1[2] * matrix2[8] + matrix1[6] * matrix2[9] + matrix1[10] * matrix2[10] + matrix1[14] * matrix2[11]; result[14] = matrix1[2] * matrix2[12] + matrix1[6] * matrix2[13] + matrix1[10] * matrix2[14] + matrix1[14] * matrix2[15]; result[3] = matrix1[3] * matrix2[0] + matrix1[7] * matrix2[1] + matrix1[11] * matrix2[2] + matrix1[15] * matrix2[3]; result[7] = matrix1[3] * matrix2[4] + matrix1[7] * matrix2[5] + matrix1[11] * matrix2[6] + matrix1[15] * matrix2[7]; result[11] = matrix1[3] * matrix2[8] + matrix1[7] * matrix2[9] + matrix1[11] * matrix2[10] + matrix1[15] * matrix2[11]; result[15] = matrix1[3] * matrix2[12] + matrix1[7] * matrix2[13] + matrix1[11] * matrix2[14] + matrix1[15] * matrix2[15]; } static void MultiplyMatrixByVector4by4OpenGL_FLOAT(float[] resultvector, float[] matrix, float[] pvector) { resultvector[0] = matrix[0] * pvector[0] + matrix[4] * pvector[1] + matrix[8] * pvector[2] + matrix[12] * pvector[3]; resultvector[1] = matrix[1] * pvector[0] + matrix[5] * pvector[1] + matrix[9] * pvector[2] + matrix[13] * pvector[3]; resultvector[2] = matrix[2] * pvector[0] + matrix[6] * pvector[1] + matrix[10] * pvector[2] + matrix[14] * pvector[3]; resultvector[3] = matrix[3] * pvector[0] + matrix[7] * pvector[1] + matrix[11] * pvector[2] + matrix[15] * pvector[3]; } // This code comes directly from GLU except that it is for float static int GlhInvertMatrixf2(float[] m, float[] @out) { float[][] wtmp = RcArrayUtils.Of(4, 8); float m0, m1, m2, m3, s; float[] r0, r1, r2, r3; r0 = wtmp[0]; r1 = wtmp[1]; r2 = wtmp[2]; r3 = wtmp[3]; r0[0] = MAT(m, 0, 0); r0[1] = MAT(m, 0, 1); r0[2] = MAT(m, 0, 2); r0[3] = MAT(m, 0, 3); r0[4] = 1.0f; r0[5] = r0[6] = r0[7] = 0.0f; r1[0] = MAT(m, 1, 0); r1[1] = MAT(m, 1, 1); r1[2] = MAT(m, 1, 2); r1[3] = MAT(m, 1, 3); r1[5] = 1.0f; r1[4] = r1[6] = r1[7] = 0.0f; r2[0] = MAT(m, 2, 0); r2[1] = MAT(m, 2, 1); r2[2] = MAT(m, 2, 2); r2[3] = MAT(m, 2, 3); r2[6] = 1.0f; r2[4] = r2[5] = r2[7] = 0.0f; r3[0] = MAT(m, 3, 0); r3[1] = MAT(m, 3, 1); r3[2] = MAT(m, 3, 2); r3[3] = MAT(m, 3, 3); r3[7] = 1.0f; r3[4] = r3[5] = r3[6] = 0.0f; /* choose pivot - or die */ if (Math.Abs(r3[0]) > Math.Abs(r2[0])) { float[] r = r2; r2 = r3; r3 = r; } if (Math.Abs(r2[0]) > Math.Abs(r1[0])) { float[] r = r2; r2 = r1; r1 = r; } if (Math.Abs(r1[0]) > Math.Abs(r0[0])) { float[] r = r1; r1 = r0; r0 = r; } if (0.0 == r0[0]) return 0; /* eliminate first variable */ m1 = r1[0] / r0[0]; m2 = r2[0] / r0[0]; m3 = r3[0] / r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (Math.Abs(r3[1]) > Math.Abs(r2[1])) { float[] r = r2; r2 = r3; r3 = r; } if (Math.Abs(r2[1]) > Math.Abs(r1[1])) { float[] r = r2; r2 = r1; r1 = r; } if (0.0 == r1[1]) return 0; /* eliminate second variable */ m2 = r2[1] / r1[1]; m3 = r3[1] / r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (Math.Abs(r3[2]) > Math.Abs(r2[2])) { float[] r = r2; r2 = r3; r3 = r; } if (0.0 == r2[2]) return 0; /* eliminate third variable */ m3 = r3[2] / r2[2]; r3[3] -= m3 * r2[3]; r3[4] -= m3 * r2[4]; r3[5] -= m3 * r2[5]; r3[6] -= m3 * r2[6]; r3[7] -= m3 * r2[7]; /* last check */ if (0.0 == r3[3]) return 0; s = 1.0f / r3[3]; /* now back substitute row 3 */ r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; /* now back substitute row 2 */ s = 1.0f / r2[2]; r2[4] = s * (r2[4] - r3[4] * m2); r2[5] = s * (r2[5] - r3[5] * m2); r2[6] = s * (r2[6] - r3[6] * m2); r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1; r1[5] -= r3[5] * m1; r1[6] -= r3[6] * m1; r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0; r0[5] -= r3[5] * m0; r0[6] -= r3[6] * m0; r0[7] -= r3[7] * m0; m1 = r1[2]; /* now back substitute row 1 */ s = 1.0f / r1[1]; r1[4] = s * (r1[4] - r2[4] * m1); r1[5] = s * (r1[5] - r2[5] * m1); r1[6] = s * (r1[6] - r2[6] * m1); r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0; r0[5] -= r2[5] * m0; r0[6] -= r2[6] * m0; r0[7] -= r2[7] * m0; m0 = r0[1]; /* now back substitute row 0 */ s = 1.0f / r0[0]; r0[4] = s * (r0[4] - r1[4] * m0); r0[5] = s * (r0[5] - r1[5] * m0); r0[6] = s * (r0[6] - r1[6] * m0); r0[7] = s * (r0[7] - r1[7] * m0); MAT(@out, 0, 0, r0[4]); MAT(@out, 0, 1, r0[5]); MAT(@out, 0, 2, r0[6]); MAT(@out, 0, 3, r0[7]); MAT(@out, 1, 0, r1[4]); MAT(@out, 1, 1, r1[5]); MAT(@out, 1, 2, r1[6]); MAT(@out, 1, 3, r1[7]); MAT(@out, 2, 0, r2[4]); MAT(@out, 2, 1, r2[5]); MAT(@out, 2, 2, r2[6]); MAT(@out, 2, 3, r2[7]); MAT(@out, 3, 0, r3[4]); MAT(@out, 3, 1, r3[5]); MAT(@out, 3, 2, r3[6]); MAT(@out, 3, 3, r3[7]); return 1; } static float MAT(float[] m, int r, int c) { return m[(c) * 4 + (r)]; } static void MAT(float[] m, int r, int c, float v) { m[(c) * 4 + (r)] = v; } }