/* Copyright (c) 2009-2010 Mikko Mononen memon@inside.org recast4j copyright (c) 2015-2019 Piotr Piastucki piotr@jtilia.org DotRecast Copyright (c) 2023 Choi Ikpil ikpil@naver.com This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ using System; using System.Collections.Generic; using DotRecast.Core; namespace DotRecast.Recast.Geom { public class RcChunkyTriMesh { private List nodes; private int ntris; private int maxTrisPerChunk; private void CalcExtends(BoundsItem[] items, int imin, int imax, ref RcVec2f bmin, ref RcVec2f bmax) { bmin.X = items[imin].bmin.X; bmin.Y = items[imin].bmin.Y; bmax.X = items[imin].bmax.X; bmax.Y = items[imin].bmax.Y; for (int i = imin + 1; i < imax; ++i) { BoundsItem it = items[i]; if (it.bmin.X < bmin.X) { bmin.X = it.bmin.X; } if (it.bmin.Y < bmin.Y) { bmin.Y = it.bmin.Y; } if (it.bmax.X > bmax.X) { bmax.X = it.bmax.X; } if (it.bmax.Y > bmax.Y) { bmax.Y = it.bmax.Y; } } } private int LongestAxis(float x, float y) { return y > x ? 1 : 0; } private void Subdivide(BoundsItem[] items, int imin, int imax, int trisPerChunk, List nodes, int[] inTris) { int inum = imax - imin; RcChunkyTriMeshNode node = new RcChunkyTriMeshNode(); nodes.Add(node); if (inum <= trisPerChunk) { // Leaf CalcExtends(items, imin, imax, ref node.bmin, ref node.bmax); // Copy triangles. node.i = nodes.Count; node.tris = new int[inum * 3]; int dst = 0; for (int i = imin; i < imax; ++i) { int src = items[i].i * 3; node.tris[dst++] = inTris[src]; node.tris[dst++] = inTris[src + 1]; node.tris[dst++] = inTris[src + 2]; } } else { // Split CalcExtends(items, imin, imax, ref node.bmin, ref node.bmax); int axis = LongestAxis(node.bmax.X - node.bmin.X, node.bmax.Y - node.bmin.Y); if (axis == 0) { Array.Sort(items, imin, imax - imin, BoundsItemXComparer.Shared); // Sort along x-axis } else if (axis == 1) { Array.Sort(items, imin, imax - imin, BoundsItemYComparer.Shared); // Sort along y-axis } int isplit = imin + inum / 2; // Left Subdivide(items, imin, isplit, trisPerChunk, nodes, inTris); // Right Subdivide(items, isplit, imax, trisPerChunk, nodes, inTris); // Negative index means escape. node.i = -nodes.Count; } } public RcChunkyTriMesh(float[] verts, int[] tris, int ntris, int trisPerChunk) { int nchunks = (ntris + trisPerChunk - 1) / trisPerChunk; nodes = new List(nchunks); this.ntris = ntris; // Build tree BoundsItem[] items = new BoundsItem[ntris]; for (int i = 0; i < ntris; i++) { int t = i * 3; BoundsItem it = items[i] = new BoundsItem(); it.i = i; // Calc triangle XZ bounds. it.bmin.X = it.bmax.X = verts[tris[t] * 3 + 0]; it.bmin.Y = it.bmax.Y = verts[tris[t] * 3 + 2]; for (int j = 1; j < 3; ++j) { int v = tris[t + j] * 3; if (verts[v] < it.bmin.X) { it.bmin.X = verts[v]; } if (verts[v + 2] < it.bmin.Y) { it.bmin.Y = verts[v + 2]; } if (verts[v] > it.bmax.X) { it.bmax.X = verts[v]; } if (verts[v + 2] > it.bmax.Y) { it.bmax.Y = verts[v + 2]; } } } Subdivide(items, 0, ntris, trisPerChunk, nodes, tris); // Calc max tris per node. maxTrisPerChunk = 0; foreach (RcChunkyTriMeshNode node in nodes) { bool isLeaf = node.i >= 0; if (!isLeaf) { continue; } if (node.tris.Length / 3 > maxTrisPerChunk) { maxTrisPerChunk = node.tris.Length / 3; } } } private bool CheckOverlapRect(float[] amin, float[] amax, RcVec2f bmin, RcVec2f bmax) { bool overlap = true; overlap = (amin[0] > bmax.X || amax[0] < bmin.X) ? false : overlap; overlap = (amin[1] > bmax.Y || amax[1] < bmin.Y) ? false : overlap; return overlap; } public List GetChunksOverlappingRect(float[] bmin, float[] bmax) { // Traverse tree List ids = new List(); int i = 0; while (i < nodes.Count) { RcChunkyTriMeshNode node = nodes[i]; bool overlap = CheckOverlapRect(bmin, bmax, node.bmin, node.bmax); bool isLeafNode = node.i >= 0; if (isLeafNode && overlap) { ids.Add(node); } if (overlap || isLeafNode) { i++; } else { i = -node.i; } } return ids; } public List GetChunksOverlappingSegment(float[] p, float[] q) { // Traverse tree List ids = new List(); int i = 0; while (i < nodes.Count) { RcChunkyTriMeshNode node = nodes[i]; bool overlap = CheckOverlapSegment(p, q, node.bmin, node.bmax); bool isLeafNode = node.i >= 0; if (isLeafNode && overlap) { ids.Add(node); } if (overlap || isLeafNode) { i++; } else { i = -node.i; } } return ids; } private bool CheckOverlapSegment(float[] p, float[] q, RcVec2f bmin, RcVec2f bmax) { float EPSILON = 1e-6f; float tmin = 0; float tmax = 1; float[] d = new float[2]; d[0] = q[0] - p[0]; d[1] = q[1] - p[1]; for (int i = 0; i < 2; i++) { if (Math.Abs(d[i]) < EPSILON) { // Ray is parallel to slab. No hit if origin not within slab if (p[i] < bmin.Get(i) || p[i] > bmax.Get(i)) return false; } else { // Compute intersection t value of ray with near and far plane of slab float ood = 1.0f / d[i]; float t1 = (bmin.Get(i) - p[i]) * ood; float t2 = (bmax.Get(i) - p[i]) * ood; if (t1 > t2) { (t1, t2) = (t2, t1); } if (t1 > tmin) tmin = t1; if (t2 < tmax) tmax = t2; if (tmin > tmax) return false; } } return true; } } }