forked from mirror/DotRecast
645 lines
20 KiB
C#
645 lines
20 KiB
C#
/*
|
|
recast4j copyright (c) 2015-2019 Piotr Piastucki piotr@jtilia.org
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using System.Runtime.CompilerServices;
|
|
|
|
namespace DotRecast.Core
|
|
{
|
|
public struct RcVec3f
|
|
{
|
|
public float x;
|
|
public float y;
|
|
public float z;
|
|
|
|
public static RcVec3f Zero { get; } = new RcVec3f(0.0f, 0.0f, 0.0f);
|
|
public static RcVec3f One { get; } = new RcVec3f(1.0f);
|
|
public static RcVec3f UnitX { get; } = new RcVec3f(1.0f, 0.0f, 0.0f);
|
|
public static RcVec3f UnitY { get; } = new RcVec3f(0.0f, 1.0f, 0.0f);
|
|
public static RcVec3f UnitZ { get; } = new RcVec3f(0.0f, 0.0f, 1.0f);
|
|
|
|
public static RcVec3f Of(float[] f)
|
|
{
|
|
return Of(f, 0);
|
|
}
|
|
|
|
public static RcVec3f Of(float[] f, int idx)
|
|
{
|
|
return Of(f[idx + 0], f[idx + 1], f[idx + 2]);
|
|
}
|
|
|
|
public static RcVec3f Of(float x, float y, float z)
|
|
{
|
|
return new RcVec3f(x, y, z);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public RcVec3f(float x, float y, float z)
|
|
{
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public RcVec3f(float f)
|
|
{
|
|
x = f;
|
|
y = f;
|
|
z = f;
|
|
}
|
|
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public RcVec3f(float[] f)
|
|
{
|
|
x = f[0];
|
|
y = f[1];
|
|
z = f[2];
|
|
}
|
|
|
|
public float this[int index]
|
|
{
|
|
get => GetElement(index);
|
|
set => SetElement(index, value);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public float GetElement(int index)
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0: return x;
|
|
case 1: return y;
|
|
case 2: return z;
|
|
default: throw new IndexOutOfRangeException($"{index}");
|
|
}
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void SetElement(int index, float value)
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0:
|
|
x = value;
|
|
break;
|
|
case 1:
|
|
y = value;
|
|
break;
|
|
case 2:
|
|
z = value;
|
|
break;
|
|
|
|
default: throw new IndexOutOfRangeException($"{index}-{value}");
|
|
}
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Set(float a, float b, float c)
|
|
{
|
|
x = a;
|
|
y = b;
|
|
z = c;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Set(float[] @in)
|
|
{
|
|
Set(@in, 0);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Set(float[] @in, int i)
|
|
{
|
|
x = @in[i];
|
|
y = @in[i + 1];
|
|
z = @in[i + 2];
|
|
}
|
|
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public readonly float Length()
|
|
{
|
|
return (float)Math.Sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public readonly RcVec3f Subtract(RcVec3f right)
|
|
{
|
|
return new RcVec3f(
|
|
x - right.x,
|
|
y - right.y,
|
|
z - right.z
|
|
);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public readonly RcVec3f Add(RcVec3f v2)
|
|
{
|
|
return new RcVec3f(
|
|
x + v2.x,
|
|
y + v2.y,
|
|
z + v2.z
|
|
);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public readonly RcVec3f Scale(float scale)
|
|
{
|
|
return new RcVec3f(
|
|
x * scale,
|
|
y * scale,
|
|
z * scale
|
|
);
|
|
}
|
|
|
|
|
|
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
|
|
/// @param[in] u A vector [(x, y, z)]
|
|
/// @param[in] v A vector [(x, y, z)]
|
|
/// @return The dot product on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are
|
|
/// ignored.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public readonly float Dot2D(RcVec3f v)
|
|
{
|
|
return x * v.x + z * v.z;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public readonly float Dot2D(float[] v, int vi)
|
|
{
|
|
return x * v[vi] + z * v[vi + 2];
|
|
}
|
|
|
|
|
|
public override bool Equals(object obj)
|
|
{
|
|
if (!(obj is RcVec3f))
|
|
return false;
|
|
|
|
return Equals((RcVec3f)obj);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public bool Equals(RcVec3f other)
|
|
{
|
|
return x.Equals(other.x) &&
|
|
y.Equals(other.y) &&
|
|
z.Equals(other.z);
|
|
}
|
|
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public override int GetHashCode()
|
|
{
|
|
int hash = x.GetHashCode();
|
|
hash = RcHashCodes.CombineHashCodes(hash, y.GetHashCode());
|
|
hash = RcHashCodes.CombineHashCodes(hash, z.GetHashCode());
|
|
return hash;
|
|
}
|
|
|
|
/// Normalizes the vector.
|
|
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Normalize()
|
|
{
|
|
float d = (float)(1.0f / Math.Sqrt(RcMath.Sqr(x) + RcMath.Sqr(y) + RcMath.Sqr(z)));
|
|
if (d != 0)
|
|
{
|
|
x *= d;
|
|
y *= d;
|
|
z *= d;
|
|
}
|
|
}
|
|
|
|
public const float EPSILON = 1e-6f;
|
|
|
|
/// Normalizes the vector if the length is greater than zero.
|
|
/// If the magnitude is zero, the vector is unchanged.
|
|
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void SafeNormalize()
|
|
{
|
|
float sqMag = RcMath.Sqr(x) + RcMath.Sqr(y) + RcMath.Sqr(z);
|
|
if (sqMag > EPSILON)
|
|
{
|
|
float inverseMag = 1.0f / (float)Math.Sqrt(sqMag);
|
|
x *= inverseMag;
|
|
y *= inverseMag;
|
|
z *= inverseMag;
|
|
}
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Min(float[] @in, int i)
|
|
{
|
|
x = Math.Min(x, @in[i]);
|
|
y = Math.Min(y, @in[i + 1]);
|
|
z = Math.Min(z, @in[i + 2]);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Min(RcVec3f b)
|
|
{
|
|
x = Math.Min(x, b.x);
|
|
y = Math.Min(y, b.y);
|
|
z = Math.Min(z, b.z);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Max(RcVec3f b)
|
|
{
|
|
x = Math.Max(x, b.x);
|
|
y = Math.Max(y, b.y);
|
|
z = Math.Max(z, b.z);
|
|
}
|
|
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Max(float[] @in, int i)
|
|
{
|
|
x = Math.Max(x, @in[i]);
|
|
y = Math.Max(y, @in[i + 1]);
|
|
z = Math.Max(z, @in[i + 2]);
|
|
}
|
|
|
|
public override string ToString()
|
|
{
|
|
return $"{x}, {y}, {z}";
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static bool operator ==(RcVec3f left, RcVec3f right)
|
|
{
|
|
return left.Equals(right);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static bool operator !=(RcVec3f left, RcVec3f right)
|
|
{
|
|
return !left.Equals(right);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f operator -(RcVec3f left, RcVec3f right)
|
|
{
|
|
return left.Subtract(right);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f operator +(RcVec3f left, RcVec3f right)
|
|
{
|
|
return left.Add(right);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f operator *(RcVec3f left, RcVec3f right)
|
|
{
|
|
return new RcVec3f(
|
|
left.x * right.x,
|
|
left.y * right.y,
|
|
left.z * right.z
|
|
);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f operator *(RcVec3f left, float right)
|
|
{
|
|
return left * new RcVec3f(right);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f operator *(float left, RcVec3f right)
|
|
{
|
|
return right * left;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f Cross(RcVec3f v1, RcVec3f v2)
|
|
{
|
|
return new RcVec3f(
|
|
(v1.y * v2.z) - (v1.z * v2.y),
|
|
(v1.z * v2.x) - (v1.x * v2.z),
|
|
(v1.x * v2.y) - (v1.y * v2.x)
|
|
);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f Lerp(RcVec3f v1, RcVec3f v2, float t)
|
|
{
|
|
return new RcVec3f(
|
|
v1.x + (v2.x - v1.x) * t,
|
|
v1.y + (v2.y - v1.y) * t,
|
|
v1.z + (v2.z - v1.z) * t
|
|
);
|
|
}
|
|
|
|
/// Returns the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the two points.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Distance(RcVec3f v1, RcVec3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dy = v2.y - v1.y;
|
|
float dz = v2.z - v1.z;
|
|
return (float)Math.Sqrt(dx * dx + dy * dy + dz * dz);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dot(RcVec3f v1, RcVec3f v2)
|
|
{
|
|
return (v1.x * v2.x) + (v1.y * v2.y)
|
|
+ (v1.z * v2.z);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dot(float[] v1, float[] v2)
|
|
{
|
|
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dot(float[] v1, RcVec3f v2)
|
|
{
|
|
return v1[0] * v2.x + v1[1] * v2.y + v1[2] * v2.z;
|
|
}
|
|
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float PerpXZ(RcVec3f a, RcVec3f b)
|
|
{
|
|
return (a.x * b.z) - (a.z * b.x);
|
|
}
|
|
|
|
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
|
|
/// @param[out] dest The result vector. [(x, y, z)]
|
|
/// @param[in] v1 The base vector. [(x, y, z)]
|
|
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
|
|
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f Mad(RcVec3f v1, RcVec3f v2, float s)
|
|
{
|
|
return new RcVec3f()
|
|
{
|
|
x = v1.x + (v2.x * s),
|
|
y = v1.y + (v2.y * s),
|
|
z = v1.z + (v2.z * s),
|
|
};
|
|
}
|
|
|
|
/// Performs a linear interpolation between two vectors. (@p v1 toward @p
|
|
/// v2)
|
|
/// @param[out] dest The result vector. [(x, y, x)]
|
|
/// @param[in] v1 The starting vector.
|
|
/// @param[in] v2 The destination vector.
|
|
/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static RcVec3f Lerp(float[] verts, int v1, int v2, float t)
|
|
{
|
|
return new RcVec3f(
|
|
verts[v1 + 0] + (verts[v2 + 0] - verts[v1 + 0]) * t,
|
|
verts[v1 + 1] + (verts[v2 + 1] - verts[v1 + 1]) * t,
|
|
verts[v1 + 2] + (verts[v2 + 2] - verts[v1 + 2]) * t
|
|
);
|
|
}
|
|
|
|
|
|
/// Returns the distance between two points.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the two points.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float DistSqr(RcVec3f v1, float[] v2, int i)
|
|
{
|
|
float dx = v2[i] - v1.x;
|
|
float dy = v2[i + 1] - v1.y;
|
|
float dz = v2[i + 2] - v1.z;
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float DistSqr(RcVec3f v1, RcVec3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dy = v2.y - v1.y;
|
|
float dz = v2.z - v1.z;
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float DistSqr(float[] v, int i, int j)
|
|
{
|
|
float dx = v[i] - v[j];
|
|
float dy = v[i + 1] - v[j + 1];
|
|
float dz = v[i + 2] - v[j + 2];
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float DistSqr(float[] v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dy = v2[1] - v1[1];
|
|
float dz = v2[2] - v1[2];
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
/// Derives the distance between the specified points on the xz-plane.
|
|
/// @param[in] v1 A point. [(x, y, z)]
|
|
/// @param[in] v2 A point. [(x, y, z)]
|
|
/// @return The distance between the point on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are
|
|
/// ignored.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dist2D(float[] v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dz = v2[2] - v1[2];
|
|
return (float)Math.Sqrt(dx * dx + dz * dz);
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dist2D(RcVec3f v1, RcVec3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dz = v2.z - v1.z;
|
|
return (float)Math.Sqrt(dx * dx + dz * dz);
|
|
}
|
|
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dist2DSqr(float[] v1, float[] v2)
|
|
{
|
|
float dx = v2[0] - v1[0];
|
|
float dz = v2[2] - v1[2];
|
|
return dx * dx + dz * dz;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dist2DSqr(RcVec3f v1, RcVec3f v2)
|
|
{
|
|
float dx = v2.x - v1.x;
|
|
float dz = v2.z - v1.z;
|
|
return dx * dx + dz * dz;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dist2DSqr(RcVec3f p, float[] verts, int i)
|
|
{
|
|
float dx = verts[i] - p.x;
|
|
float dz = verts[i + 2] - p.z;
|
|
return dx * dx + dz * dz;
|
|
}
|
|
|
|
/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
|
|
/// @param[in] u The LHV vector [(x, y, z)]
|
|
/// @param[in] v The RHV vector [(x, y, z)]
|
|
/// @return The dot product on the xz-plane.
|
|
///
|
|
/// The vectors are projected onto the xz-plane, so the y-values are
|
|
/// ignored.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Perp2D(RcVec3f u, RcVec3f v)
|
|
{
|
|
return u.z * v.x - u.x * v.z;
|
|
}
|
|
|
|
/// Derives the square of the scalar length of the vector. (len * len)
|
|
/// @param[in] v The vector. [(x, y, z)]
|
|
/// @return The square of the scalar length of the vector.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float LenSqr(RcVec3f v)
|
|
{
|
|
return v.x * v.x + v.y * v.y + v.z * v.z;
|
|
}
|
|
|
|
|
|
/// Checks that the specified vector's components are all finite.
|
|
/// @param[in] v A point. [(x, y, z)]
|
|
/// @return True if all of the point's components are finite, i.e. not NaN
|
|
/// or any of the infinities.
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static bool IsFinite(RcVec3f v)
|
|
{
|
|
return float.IsFinite(v.x) && float.IsFinite(v.y) && float.IsFinite(v.z);
|
|
}
|
|
|
|
/// Checks that the specified vector's 2D components are finite.
|
|
/// @param[in] v A point. [(x, y, z)]
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static bool IsFinite2D(RcVec3f v)
|
|
{
|
|
return float.IsFinite(v.x) && float.IsFinite(v.z);
|
|
}
|
|
|
|
|
|
public static void Copy(ref RcVec3f @out, float[] @in, int i)
|
|
{
|
|
Copy(ref @out, 0, @in, i);
|
|
}
|
|
|
|
public static void Copy(float[] @out, int n, float[] @in, int m)
|
|
{
|
|
@out[n] = @in[m];
|
|
@out[n + 1] = @in[m + 1];
|
|
@out[n + 2] = @in[m + 2];
|
|
}
|
|
|
|
public static void Copy(float[] @out, int n, RcVec3f @in, int m)
|
|
{
|
|
@out[n] = @in[m];
|
|
@out[n + 1] = @in[m + 1];
|
|
@out[n + 2] = @in[m + 2];
|
|
}
|
|
|
|
public static void Copy(ref RcVec3f @out, int n, float[] @in, int m)
|
|
{
|
|
@out[n] = @in[m];
|
|
@out[n + 1] = @in[m + 1];
|
|
@out[n + 2] = @in[m + 2];
|
|
}
|
|
|
|
public static void Add(ref RcVec3f e0, RcVec3f a, float[] verts, int i)
|
|
{
|
|
e0.x = a.x + verts[i];
|
|
e0.y = a.y + verts[i + 1];
|
|
e0.z = a.z + verts[i + 2];
|
|
}
|
|
|
|
|
|
public static void Sub(ref RcVec3f e0, float[] verts, int i, int j)
|
|
{
|
|
e0.x = verts[i] - verts[j];
|
|
e0.y = verts[i + 1] - verts[j + 1];
|
|
e0.z = verts[i + 2] - verts[j + 2];
|
|
}
|
|
|
|
|
|
public static void Sub(ref RcVec3f e0, RcVec3f i, float[] verts, int j)
|
|
{
|
|
e0.x = i.x - verts[j];
|
|
e0.y = i.y - verts[j + 1];
|
|
e0.z = i.z - verts[j + 2];
|
|
}
|
|
|
|
|
|
public static void Cross(float[] dest, float[] v1, float[] v2)
|
|
{
|
|
dest[0] = v1[1] * v2[2] - v1[2] * v2[1];
|
|
dest[1] = v1[2] * v2[0] - v1[0] * v2[2];
|
|
dest[2] = v1[0] * v2[1] - v1[1] * v2[0];
|
|
}
|
|
|
|
public static void Cross(float[] dest, RcVec3f v1, RcVec3f v2)
|
|
{
|
|
dest[0] = v1.y * v2.z - v1.z * v2.y;
|
|
dest[1] = v1.z * v2.x - v1.x * v2.z;
|
|
dest[2] = v1.x * v2.y - v1.y * v2.x;
|
|
}
|
|
|
|
public static void Cross(ref RcVec3f dest, RcVec3f v1, RcVec3f v2)
|
|
{
|
|
dest.x = v1.y * v2.z - v1.z * v2.y;
|
|
dest.y = v1.z * v2.x - v1.x * v2.z;
|
|
dest.z = v1.x * v2.y - v1.y * v2.x;
|
|
}
|
|
|
|
|
|
public static void Normalize(float[] v)
|
|
{
|
|
float d = (float)(1.0f / Math.Sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
|
|
v[0] *= d;
|
|
v[1] *= d;
|
|
v[2] *= d;
|
|
}
|
|
|
|
public static void Normalize(ref RcVec3f v)
|
|
{
|
|
float d = (float)(1.0f / Math.Sqrt(v.x * v.x + v.y * v.y + v.z * v.z));
|
|
v.x *= d;
|
|
v.y *= d;
|
|
v.z *= d;
|
|
}
|
|
}
|
|
} |