forked from mirror/DotRecast
295 lines
9.1 KiB
C#
295 lines
9.1 KiB
C#
/*
|
|
Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
recast4j copyright (c) 2015-2019 Piotr Piastucki piotr@jtilia.org
|
|
DotRecast Copyright (c) 2023 Choi Ikpil ikpil@naver.com
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using DotRecast.Core;
|
|
|
|
namespace DotRecast.Recast.Geom
|
|
{
|
|
public class ChunkyTriMesh
|
|
{
|
|
List<ChunkyTriMeshNode> nodes;
|
|
int ntris;
|
|
int maxTrisPerChunk;
|
|
|
|
private void CalcExtends(BoundsItem[] items, int imin, int imax, ref Vector2f bmin, ref Vector2f bmax)
|
|
{
|
|
bmin.x = items[imin].bmin.x;
|
|
bmin.y = items[imin].bmin.y;
|
|
|
|
bmax.x = items[imin].bmax.x;
|
|
bmax.y = items[imin].bmax.y;
|
|
|
|
for (int i = imin + 1; i < imax; ++i)
|
|
{
|
|
BoundsItem it = items[i];
|
|
if (it.bmin.x < bmin.x)
|
|
{
|
|
bmin.x = it.bmin.x;
|
|
}
|
|
|
|
if (it.bmin.y < bmin.y)
|
|
{
|
|
bmin.y = it.bmin.y;
|
|
}
|
|
|
|
if (it.bmax.x > bmax.x)
|
|
{
|
|
bmax.x = it.bmax.x;
|
|
}
|
|
|
|
if (it.bmax.y > bmax.y)
|
|
{
|
|
bmax.y = it.bmax.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
private int LongestAxis(float x, float y)
|
|
{
|
|
return y > x ? 1 : 0;
|
|
}
|
|
|
|
private void Subdivide(BoundsItem[] items, int imin, int imax, int trisPerChunk, List<ChunkyTriMeshNode> nodes, int[] inTris)
|
|
{
|
|
int inum = imax - imin;
|
|
|
|
ChunkyTriMeshNode node = new ChunkyTriMeshNode();
|
|
nodes.Add(node);
|
|
|
|
if (inum <= trisPerChunk)
|
|
{
|
|
// Leaf
|
|
CalcExtends(items, imin, imax, ref node.bmin, ref node.bmax);
|
|
|
|
// Copy triangles.
|
|
node.i = nodes.Count;
|
|
node.tris = new int[inum * 3];
|
|
|
|
int dst = 0;
|
|
for (int i = imin; i < imax; ++i)
|
|
{
|
|
int src = items[i].i * 3;
|
|
node.tris[dst++] = inTris[src];
|
|
node.tris[dst++] = inTris[src + 1];
|
|
node.tris[dst++] = inTris[src + 2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Split
|
|
CalcExtends(items, imin, imax, ref node.bmin, ref node.bmax);
|
|
|
|
int axis = LongestAxis(node.bmax.x - node.bmin.x, node.bmax.y - node.bmin.y);
|
|
|
|
if (axis == 0)
|
|
{
|
|
Array.Sort(items, imin, imax - imin, new CompareItemX());
|
|
// Sort along x-axis
|
|
}
|
|
else if (axis == 1)
|
|
{
|
|
Array.Sort(items, imin, imax - imin, new CompareItemY());
|
|
// Sort along y-axis
|
|
}
|
|
|
|
int isplit = imin + inum / 2;
|
|
|
|
// Left
|
|
Subdivide(items, imin, isplit, trisPerChunk, nodes, inTris);
|
|
// Right
|
|
Subdivide(items, isplit, imax, trisPerChunk, nodes, inTris);
|
|
|
|
// Negative index means escape.
|
|
node.i = -nodes.Count;
|
|
}
|
|
}
|
|
|
|
public ChunkyTriMesh(float[] verts, int[] tris, int ntris, int trisPerChunk)
|
|
{
|
|
int nchunks = (ntris + trisPerChunk - 1) / trisPerChunk;
|
|
|
|
nodes = new List<ChunkyTriMeshNode>(nchunks);
|
|
this.ntris = ntris;
|
|
|
|
// Build tree
|
|
BoundsItem[] items = new BoundsItem[ntris];
|
|
|
|
for (int i = 0; i < ntris; i++)
|
|
{
|
|
int t = i * 3;
|
|
BoundsItem it = items[i] = new BoundsItem();
|
|
it.i = i;
|
|
// Calc triangle XZ bounds.
|
|
it.bmin.x = it.bmax.x = verts[tris[t] * 3 + 0];
|
|
it.bmin.y = it.bmax.y = verts[tris[t] * 3 + 2];
|
|
for (int j = 1; j < 3; ++j)
|
|
{
|
|
int v = tris[t + j] * 3;
|
|
if (verts[v] < it.bmin.x)
|
|
{
|
|
it.bmin.x = verts[v];
|
|
}
|
|
|
|
if (verts[v + 2] < it.bmin.y)
|
|
{
|
|
it.bmin.y = verts[v + 2];
|
|
}
|
|
|
|
if (verts[v] > it.bmax.x)
|
|
{
|
|
it.bmax.x = verts[v];
|
|
}
|
|
|
|
if (verts[v + 2] > it.bmax.y)
|
|
{
|
|
it.bmax.y = verts[v + 2];
|
|
}
|
|
}
|
|
}
|
|
|
|
Subdivide(items, 0, ntris, trisPerChunk, nodes, tris);
|
|
|
|
// Calc max tris per node.
|
|
maxTrisPerChunk = 0;
|
|
foreach (ChunkyTriMeshNode node in nodes)
|
|
{
|
|
bool isLeaf = node.i >= 0;
|
|
if (!isLeaf)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (node.tris.Length / 3 > maxTrisPerChunk)
|
|
{
|
|
maxTrisPerChunk = node.tris.Length / 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
private bool CheckOverlapRect(float[] amin, float[] amax, Vector2f bmin, Vector2f bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax.x || amax[0] < bmin.x) ? false : overlap;
|
|
overlap = (amin[1] > bmax.y || amax[1] < bmin.y) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
public List<ChunkyTriMeshNode> GetChunksOverlappingRect(float[] bmin, float[] bmax)
|
|
{
|
|
// Traverse tree
|
|
List<ChunkyTriMeshNode> ids = new List<ChunkyTriMeshNode>();
|
|
int i = 0;
|
|
while (i < nodes.Count)
|
|
{
|
|
ChunkyTriMeshNode node = nodes[i];
|
|
bool overlap = CheckOverlapRect(bmin, bmax, node.bmin, node.bmax);
|
|
bool isLeafNode = node.i >= 0;
|
|
|
|
if (isLeafNode && overlap)
|
|
{
|
|
ids.Add(node);
|
|
}
|
|
|
|
if (overlap || isLeafNode)
|
|
{
|
|
i++;
|
|
}
|
|
else
|
|
{
|
|
i = -node.i;
|
|
}
|
|
}
|
|
|
|
return ids;
|
|
}
|
|
|
|
public List<ChunkyTriMeshNode> GetChunksOverlappingSegment(float[] p, float[] q)
|
|
{
|
|
// Traverse tree
|
|
List<ChunkyTriMeshNode> ids = new List<ChunkyTriMeshNode>();
|
|
int i = 0;
|
|
while (i < nodes.Count)
|
|
{
|
|
ChunkyTriMeshNode node = nodes[i];
|
|
bool overlap = CheckOverlapSegment(p, q, node.bmin, node.bmax);
|
|
bool isLeafNode = node.i >= 0;
|
|
|
|
if (isLeafNode && overlap)
|
|
{
|
|
ids.Add(node);
|
|
}
|
|
|
|
if (overlap || isLeafNode)
|
|
{
|
|
i++;
|
|
}
|
|
else
|
|
{
|
|
i = -node.i;
|
|
}
|
|
}
|
|
|
|
return ids;
|
|
}
|
|
|
|
private bool CheckOverlapSegment(float[] p, float[] q, Vector2f bmin, Vector2f bmax)
|
|
{
|
|
float EPSILON = 1e-6f;
|
|
|
|
float tmin = 0;
|
|
float tmax = 1;
|
|
float[] d = new float[2];
|
|
d[0] = q[0] - p[0];
|
|
d[1] = q[1] - p[1];
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
if (Math.Abs(d[i]) < EPSILON)
|
|
{
|
|
// Ray is parallel to slab. No hit if origin not within slab
|
|
if (p[i] < bmin.Get(i) || p[i] > bmax.Get(i))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// Compute intersection t value of ray with near and far plane of slab
|
|
float ood = 1.0f / d[i];
|
|
float t1 = (bmin.Get(i) - p[i]) * ood;
|
|
float t2 = (bmax.Get(i) - p[i]) * ood;
|
|
if (t1 > t2)
|
|
{
|
|
(t1, t2) = (t2, t1);
|
|
}
|
|
|
|
if (t1 > tmin)
|
|
tmin = t1;
|
|
if (t2 < tmax)
|
|
tmax = t2;
|
|
if (tmin > tmax)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
} |