forked from mirror/DotRecast
74 lines
2.4 KiB
C#
74 lines
2.4 KiB
C#
using System;
|
|
using DotRecast.Core.Numerics;
|
|
|
|
namespace DotRecast.Detour
|
|
{
|
|
// Calculate the intersection between a polygon and a circle. A dodecagon is used as an approximation of the circle.
|
|
public class DtStrictDtPolygonByCircleConstraint : IDtPolygonByCircleConstraint
|
|
{
|
|
private const int CIRCLE_SEGMENTS = 12;
|
|
private static readonly float[] UnitCircle = CreateCircle();
|
|
|
|
public static readonly IDtPolygonByCircleConstraint Shared = new DtStrictDtPolygonByCircleConstraint();
|
|
|
|
private DtStrictDtPolygonByCircleConstraint()
|
|
{
|
|
}
|
|
|
|
public static float[] CreateCircle()
|
|
{
|
|
var temp = new float[CIRCLE_SEGMENTS * 3];
|
|
for (int i = 0; i < CIRCLE_SEGMENTS; i++)
|
|
{
|
|
float a = i * MathF.PI * 2 / CIRCLE_SEGMENTS;
|
|
temp[3 * i] = MathF.Cos(a);
|
|
temp[3 * i + 1] = 0;
|
|
temp[3 * i + 2] = -MathF.Sin(a);
|
|
}
|
|
|
|
return temp;
|
|
}
|
|
|
|
public static void ScaleCircle(Span<float> src, RcVec3f center, float radius, Span<float> dst)
|
|
{
|
|
for (int i = 0; i < CIRCLE_SEGMENTS; i++)
|
|
{
|
|
dst[3 * i] = src[3 * i] * radius + center.X;
|
|
dst[3 * i + 1] = center.Y;
|
|
dst[3 * i + 2] = src[3 * i + 2] * radius + center.Z;
|
|
}
|
|
}
|
|
|
|
|
|
public float[] Apply(float[] verts, RcVec3f center, float radius)
|
|
{
|
|
float radiusSqr = radius * radius;
|
|
int outsideVertex = -1;
|
|
for (int pv = 0; pv < verts.Length; pv += 3)
|
|
{
|
|
if (RcVec.Dist2DSqr(center, verts, pv) > radiusSqr)
|
|
{
|
|
outsideVertex = pv;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (outsideVertex == -1)
|
|
{
|
|
// polygon inside circle
|
|
return verts;
|
|
}
|
|
|
|
Span<float> qCircle = stackalloc float[UnitCircle.Length];
|
|
ScaleCircle(UnitCircle, center, radius, qCircle);
|
|
float[] intersection = DtConvexConvexIntersections.Intersect(verts, qCircle);
|
|
if (intersection == null && DtUtils.PointInPolygon(center, verts, verts.Length / 3))
|
|
{
|
|
// circle inside polygon
|
|
return qCircle.ToArray();
|
|
}
|
|
|
|
return intersection;
|
|
}
|
|
}
|
|
} |