forked from mirror/DotRecast
419 lines
13 KiB
C#
419 lines
13 KiB
C#
using System;
|
|
using DotRecast.Core.Numerics;
|
|
|
|
namespace DotRecast.Detour
|
|
{
|
|
public static class DtUtils
|
|
{
|
|
public static int NextPow2(int v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v++;
|
|
return v;
|
|
}
|
|
|
|
public static int Ilog2(int v)
|
|
{
|
|
int r;
|
|
int shift;
|
|
r = (v > 0xffff ? 1 : 0) << 4;
|
|
v >>= r;
|
|
shift = (v > 0xff ? 1 : 0) << 3;
|
|
v >>= shift;
|
|
r |= shift;
|
|
shift = (v > 0xf ? 1 : 0) << 2;
|
|
v >>= shift;
|
|
r |= shift;
|
|
shift = (v > 0x3 ? 1 : 0) << 1;
|
|
v >>= shift;
|
|
r |= shift;
|
|
r |= (v >> 1);
|
|
return r;
|
|
}
|
|
|
|
/// Determines if two axis-aligned bounding boxes overlap.
|
|
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
|
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
|
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
|
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
|
/// @return True if the two AABB's overlap.
|
|
/// @see dtOverlapBounds
|
|
public static bool OverlapQuantBounds(Span<int> amin, Span<int> amax, Span<int> bmin, Span<int> bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
|
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
|
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
/// Determines if two axis-aligned bounding boxes overlap.
|
|
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
|
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
|
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
|
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
|
/// @return True if the two AABB's overlap.
|
|
/// @see dtOverlapQuantBounds
|
|
public static bool OverlapBounds(RcVec3f amin, RcVec3f amax, RcVec3f bmin, RcVec3f bmax)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (amin.X > bmax.X || amax.X < bmin.X) ? false : overlap;
|
|
overlap = (amin.Y > bmax.Y || amax.Y < bmin.Y) ? false : overlap;
|
|
overlap = (amin.Z > bmax.Z || amax.Z < bmin.Z) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
public static bool OverlapRange(float amin, float amax, float bmin, float bmax, float eps)
|
|
{
|
|
return ((amin + eps) > bmax || (amax - eps) < bmin) ? false : true;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// All vertices are projected onto the xz-plane, so the y-values are ignored.
|
|
public static bool OverlapPolyPoly2D(Span<float> polya, int npolya, Span<float> polyb, int npolyb)
|
|
{
|
|
const float eps = 1e-4f;
|
|
for (int i = 0, j = npolya - 1; i < npolya; j = i++)
|
|
{
|
|
int va = j * 3;
|
|
int vb = i * 3;
|
|
|
|
RcVec3f n = new RcVec3f(polya[vb + 2] - polya[va + 2], 0, -(polya[vb + 0] - polya[va + 0]));
|
|
|
|
RcVec2f aminmax = ProjectPoly(n, polya, npolya);
|
|
RcVec2f bminmax = ProjectPoly(n, polyb, npolyb);
|
|
if (!OverlapRange(aminmax.X, aminmax.Y, bminmax.X, bminmax.Y, eps))
|
|
{
|
|
// Found separating axis
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (int i = 0, j = npolyb - 1; i < npolyb; j = i++)
|
|
{
|
|
int va = j * 3;
|
|
int vb = i * 3;
|
|
|
|
RcVec3f n = new RcVec3f(polyb[vb + 2] - polyb[va + 2], 0, -(polyb[vb + 0] - polyb[va + 0]));
|
|
|
|
RcVec2f aminmax = ProjectPoly(n, polya, npolya);
|
|
RcVec2f bminmax = ProjectPoly(n, polyb, npolyb);
|
|
if (!OverlapRange(aminmax.X, aminmax.Y, bminmax.X, bminmax.Y, eps))
|
|
{
|
|
// Found separating axis
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// @}
|
|
/// @name Computational geometry helper functions.
|
|
/// @{
|
|
/// Derives the signed xz-plane area of the triangle ABC, or the
|
|
/// relationship of line AB to point C.
|
|
/// @param[in] a Vertex A. [(x, y, z)]
|
|
/// @param[in] b Vertex B. [(x, y, z)]
|
|
/// @param[in] c Vertex C. [(x, y, z)]
|
|
/// @return The signed xz-plane area of the triangle.
|
|
public static float TriArea2D(Span<float> verts, int a, int b, int c)
|
|
{
|
|
float abx = verts[b] - verts[a];
|
|
float abz = verts[b + 2] - verts[a + 2];
|
|
float acx = verts[c] - verts[a];
|
|
float acz = verts[c + 2] - verts[a + 2];
|
|
return acx * abz - abx * acz;
|
|
}
|
|
|
|
public static float TriArea2D(RcVec3f a, RcVec3f b, RcVec3f c)
|
|
{
|
|
float abx = b.X - a.X;
|
|
float abz = b.Z - a.Z;
|
|
float acx = c.X - a.X;
|
|
float acz = c.Z - a.Z;
|
|
return acx * abz - abx * acz;
|
|
}
|
|
|
|
// Returns a random point in a convex polygon.
|
|
// Adapted from Graphics Gems article.
|
|
public static void RandomPointInConvexPoly(Span<float> pts, int npts, Span<float> areas, float s, float t, out RcVec3f @out)
|
|
{
|
|
// Calc triangle araes
|
|
float areasum = 0.0f;
|
|
for (int i = 2; i < npts; i++)
|
|
{
|
|
areas[i] = TriArea2D(pts, 0, (i - 1) * 3, i * 3);
|
|
areasum += Math.Max(0.001f, areas[i]);
|
|
}
|
|
|
|
// Find sub triangle weighted by area.
|
|
float thr = s * areasum;
|
|
float acc = 0.0f;
|
|
float u = 1.0f;
|
|
int tri = npts - 1;
|
|
for (int i = 2; i < npts; i++)
|
|
{
|
|
float dacc = areas[i];
|
|
if (thr >= acc && thr < (acc + dacc))
|
|
{
|
|
u = (thr - acc) / dacc;
|
|
tri = i;
|
|
break;
|
|
}
|
|
|
|
acc += dacc;
|
|
}
|
|
|
|
float v = MathF.Sqrt(t);
|
|
|
|
float a = 1 - v;
|
|
float b = (1 - u) * v;
|
|
float c = u * v;
|
|
int pa = 0;
|
|
int pb = (tri - 1) * 3;
|
|
int pc = tri * 3;
|
|
|
|
@out = new RcVec3f()
|
|
{
|
|
X = a * pts[pa] + b * pts[pb] + c * pts[pc],
|
|
Y = a * pts[pa + 1] + b * pts[pb + 1] + c * pts[pc + 1],
|
|
Z = a * pts[pa + 2] + b * pts[pb + 2] + c * pts[pc + 2]
|
|
};
|
|
}
|
|
|
|
public static bool ClosestHeightPointTriangle(RcVec3f p, RcVec3f a, RcVec3f b, RcVec3f c, out float h)
|
|
{
|
|
const float EPS = 1e-6f;
|
|
|
|
h = 0;
|
|
RcVec3f v0 = RcVec3f.Subtract(c, a);
|
|
RcVec3f v1 = RcVec3f.Subtract(b, a);
|
|
RcVec3f v2 = RcVec3f.Subtract(p, a);
|
|
|
|
// Compute scaled barycentric coordinates
|
|
float denom = v0.X * v1.Z - v0.Z * v1.X;
|
|
if (MathF.Abs(denom) < EPS)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
float u = v1.Z * v2.X - v1.X * v2.Z;
|
|
float v = v0.X * v2.Z - v0.Z * v2.X;
|
|
|
|
if (denom < 0)
|
|
{
|
|
denom = -denom;
|
|
u = -u;
|
|
v = -v;
|
|
}
|
|
|
|
// If point lies inside the triangle, return interpolated ycoord.
|
|
if (u >= 0.0f && v >= 0.0f && (u + v) <= denom)
|
|
{
|
|
h = a.Y + (v0.Y * u + v1.Y * v) / denom;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public static RcVec2f ProjectPoly(RcVec3f axis, Span<float> poly, int npoly)
|
|
{
|
|
float rmin, rmax;
|
|
rmin = rmax = axis.Dot2D(new RcVec3f(poly));
|
|
for (int i = 1; i < npoly; ++i)
|
|
{
|
|
float d = axis.Dot2D(RcVec.Create(poly, i * 3));
|
|
rmin = Math.Min(rmin, d);
|
|
rmax = Math.Max(rmax, d);
|
|
}
|
|
|
|
return new RcVec2f
|
|
{
|
|
X = rmin,
|
|
Y = rmax,
|
|
};
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// All points are projected onto the xz-plane, so the y-values are ignored.
|
|
public static bool PointInPolygon(RcVec3f pt, Span<float> verts, int nverts)
|
|
{
|
|
// TODO: Replace pnpoly with triArea2D tests?
|
|
int i, j;
|
|
bool c = false;
|
|
for (i = 0, j = nverts - 1; i < nverts; j = i++)
|
|
{
|
|
int vi = i * 3;
|
|
int vj = j * 3;
|
|
if (((verts[vi + 2] > pt.Z) != (verts[vj + 2] > pt.Z)) && (pt.X < (verts[vj + 0] - verts[vi + 0])
|
|
* (pt.Z - verts[vi + 2]) / (verts[vj + 2] - verts[vi + 2]) + verts[vi + 0]))
|
|
{
|
|
c = !c;
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
public static bool DistancePtPolyEdgesSqr(RcVec3f pt, Span<float> verts, int nverts, Span<float> ed, Span<float> et)
|
|
{
|
|
// TODO: Replace pnpoly with triArea2D tests?
|
|
int i, j;
|
|
bool c = false;
|
|
for (i = 0, j = nverts - 1; i < nverts; j = i++)
|
|
{
|
|
int vi = i * 3;
|
|
int vj = j * 3;
|
|
if (((verts[vi + 2] > pt.Z) != (verts[vj + 2] > pt.Z)) &&
|
|
(pt.X < (verts[vj + 0] - verts[vi + 0]) * (pt.Z - verts[vi + 2]) / (verts[vj + 2] - verts[vi + 2]) + verts[vi + 0]))
|
|
{
|
|
c = !c;
|
|
}
|
|
|
|
ed[j] = DistancePtSegSqr2D(pt, verts, vj, vi, out et[j]);
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
public static float DistancePtSegSqr2D(RcVec3f pt, Span<float> verts, int p, int q, out float t)
|
|
{
|
|
var vp = RcVec.Create(verts, p);
|
|
var vq = RcVec.Create(verts, q);
|
|
return DistancePtSegSqr2D(pt, vp, vq, out t);
|
|
}
|
|
|
|
public static float DistancePtSegSqr2D(RcVec3f pt, RcVec3f p, RcVec3f q, out float t)
|
|
{
|
|
float pqx = q.X - p.X;
|
|
float pqz = q.Z - p.Z;
|
|
float dx = pt.X - p.X;
|
|
float dz = pt.Z - p.Z;
|
|
float d = pqx * pqx + pqz * pqz;
|
|
t = pqx * dx + pqz * dz;
|
|
if (d > 0)
|
|
{
|
|
t /= d;
|
|
}
|
|
|
|
if (t < 0)
|
|
{
|
|
t = 0;
|
|
}
|
|
else if (t > 1)
|
|
{
|
|
t = 1;
|
|
}
|
|
|
|
dx = p.X + t * pqx - pt.X;
|
|
dz = p.Z + t * pqz - pt.Z;
|
|
return dx * dx + dz * dz;
|
|
}
|
|
|
|
public static bool IntersectSegmentPoly2D(RcVec3f p0, RcVec3f p1,
|
|
Span<RcVec3f> verts, int nverts,
|
|
out float tmin, out float tmax,
|
|
out int segMin, out int segMax)
|
|
{
|
|
const float EPS = 0.000001f;
|
|
|
|
tmin = 0;
|
|
tmax = 1;
|
|
segMin = -1;
|
|
segMax = -1;
|
|
|
|
var dir = RcVec3f.Subtract(p1, p0);
|
|
|
|
var p0v = p0;
|
|
for (int i = 0, j = nverts - 1; i < nverts; j = i++)
|
|
{
|
|
RcVec3f vpj = verts[j];
|
|
RcVec3f vpi = verts[i];
|
|
var edge = RcVec3f.Subtract(vpi, vpj);
|
|
var diff = RcVec3f.Subtract(p0v, vpj);
|
|
float n = RcVec.Perp2D(edge, diff);
|
|
float d = RcVec.Perp2D(dir, edge);
|
|
if (MathF.Abs(d) < EPS)
|
|
{
|
|
// S is nearly parallel to this edge
|
|
if (n < 0)
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
float t = n / d;
|
|
if (d < 0)
|
|
{
|
|
// segment S is entering across this edge
|
|
if (t > tmin)
|
|
{
|
|
tmin = t;
|
|
segMin = j;
|
|
// S enters after leaving polygon
|
|
if (tmin > tmax)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// segment S is leaving across this edge
|
|
if (t < tmax)
|
|
{
|
|
tmax = t;
|
|
segMax = j;
|
|
// S leaves before entering polygon
|
|
if (tmax < tmin)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public static int OppositeTile(int side)
|
|
{
|
|
return (side + 4) & 0x7;
|
|
}
|
|
|
|
|
|
public static bool IntersectSegSeg2D(RcVec3f ap, RcVec3f aq, RcVec3f bp, RcVec3f bq, out float s, out float t)
|
|
{
|
|
s = 0;
|
|
t = 0;
|
|
|
|
RcVec3f u = RcVec3f.Subtract(aq, ap);
|
|
RcVec3f v = RcVec3f.Subtract(bq, bp);
|
|
RcVec3f w = RcVec3f.Subtract(ap, bp);
|
|
float d = RcVec.PerpXZ(u, v);
|
|
if (MathF.Abs(d) < 1e-6f)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
s = RcVec.PerpXZ(v, w) / d;
|
|
t = RcVec.PerpXZ(u, w) / d;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
} |