313 lines
14 KiB
C#
313 lines
14 KiB
C#
using System.Collections;
|
|
using System.Collections.Generic;
|
|
using UnityEngine;
|
|
|
|
// Sci-Fi Ship Controller. Copyright (c) 2018-2023 SCSM Pty Ltd. All rights reserved.
|
|
namespace SciFiShipController
|
|
{
|
|
/// <summary>
|
|
/// Class for implementing proportional-integral-derivative (PID) controllers.
|
|
/// </summary>
|
|
[System.Serializable]
|
|
public class PIDController
|
|
{
|
|
#region Public Variables
|
|
|
|
/// <summary>
|
|
/// Proportional (P) gain.
|
|
/// </summary>
|
|
public float pGain;
|
|
/// <summary>
|
|
/// Integral (I) gain.
|
|
/// </summary>
|
|
public float iGain;
|
|
/// <summary>
|
|
/// Derivative (D) gain.
|
|
/// </summary>
|
|
public float dGain;
|
|
/// <summary>
|
|
/// Whether input over time is used for the derivative (D) term instead of proportional (P) over time.
|
|
/// Enabling this gets rid of the effect known as "derivative kick" where changes in the target value
|
|
/// cause huge spikes in the calculated input.
|
|
/// </summary>
|
|
public bool derivativeOnMeasurement;
|
|
/// <summary>
|
|
/// Whether limits are used for the proportional (P), integral (I) and derivative (D) components individually.
|
|
/// </summary>
|
|
public bool useIndividualInputLimits;
|
|
|
|
#endregion
|
|
|
|
#region Private Variables
|
|
|
|
/// <summary>
|
|
/// Proportional (P) term.
|
|
/// </summary>
|
|
private float proportional;
|
|
/// <summary>
|
|
/// Integral (I) term.
|
|
/// </summary>
|
|
private float integral;
|
|
/// <summary>
|
|
/// Derivative (D) term.
|
|
/// </summary>
|
|
private float derivative;
|
|
/// <summary>
|
|
/// Proportional (P) term multiplied by p-gain value.
|
|
/// </summary>
|
|
private float proportionalTimesPGain;
|
|
/// <summary>
|
|
/// Integral (I) term multiplied by i-gain value.
|
|
/// </summary>
|
|
private float integralTimesIGain;
|
|
/// <summary>
|
|
/// Derivative (D) term multiplied by d-gain value.
|
|
/// </summary>
|
|
private float derivativeTimesDGain;
|
|
/// <summary>
|
|
/// The previous value of the proportional (P) term.
|
|
/// </summary>
|
|
private float previousProportional;
|
|
/// <summary>
|
|
/// The previous system value.
|
|
/// </summary>
|
|
private float previousValue;
|
|
/// <summary>
|
|
/// Whether this is the first update since this the system was last initialised or reset.
|
|
/// </summary>
|
|
private bool firstUpdate;
|
|
/// <summary>
|
|
/// The minimum allowed input value.
|
|
/// </summary>
|
|
private float minInput;
|
|
/// <summary>
|
|
/// The maximum allowed input value.
|
|
/// </summary>
|
|
private float maxInput;
|
|
|
|
/// <summary>
|
|
/// The minimum allowed proportional times p-gain value.
|
|
/// </summary>
|
|
private float minProportionalInput;
|
|
/// <summary>
|
|
/// The maximum allowed proportional times p-gain value.
|
|
/// </summary>
|
|
private float maxProportionalInput;
|
|
/// <summary>
|
|
/// The minimum allowed integral times i-gain value.
|
|
/// </summary>
|
|
private float minIntegralInput;
|
|
/// <summary>
|
|
/// The maximum allowed integral times i-gain value.
|
|
/// </summary>
|
|
private float maxIntegralInput;
|
|
/// <summary>
|
|
/// The minimum allowed derivative times d-gain value.
|
|
/// </summary>
|
|
private float minDerivativeInput;
|
|
/// <summary>
|
|
/// The maximum allowed derivative times d-gain value.
|
|
/// </summary>
|
|
private float maxDerivativeInput;
|
|
|
|
private float requiredInput;
|
|
|
|
#endregion
|
|
|
|
#region Constructors
|
|
|
|
// Class Constructor
|
|
public PIDController (float kp, float ki, float kd)
|
|
{
|
|
this.pGain = kp;
|
|
this.iGain = ki;
|
|
this.dGain = kd;
|
|
this.derivativeOnMeasurement = false;
|
|
this.useIndividualInputLimits = false;
|
|
this.firstUpdate = true;
|
|
this.minInput = Mathf.NegativeInfinity;
|
|
this.maxInput = Mathf.Infinity;
|
|
this.minProportionalInput = Mathf.NegativeInfinity;
|
|
this.maxProportionalInput = Mathf.Infinity;
|
|
this.minIntegralInput = Mathf.NegativeInfinity;
|
|
this.maxIntegralInput = Mathf.Infinity;
|
|
this.minDerivativeInput = Mathf.NegativeInfinity;
|
|
this.maxDerivativeInput = Mathf.Infinity;
|
|
this.ResetController();
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Public Non-Static Methods
|
|
|
|
///// <summary>
|
|
///// Calculates the required input to move from the system from currentValue to targetValue.
|
|
///// lastFrameTime should be set to the time since this function was last called.
|
|
///// </summary>
|
|
///// <param name="targetValue"></param>
|
|
///// <param name="actualValue"></param>
|
|
///// <param name="lastFrameTime"></param>
|
|
///// <returns></returns>
|
|
//public float RequiredInput (float targetValue, float currentValue, float lastFrameTime)
|
|
//{
|
|
// // Implements the basic PID algorithm
|
|
// // First check that the target value passed in is not NaN (as this can cause long-lasting issues)
|
|
// if (float.IsNaN(targetValue)) { targetValue = 0f; }
|
|
// // Calculate the delta to the target value
|
|
// proportional = targetValue - currentValue;
|
|
// // Multiply by iGain here instead of at the return line, to allow tuning parameters on the fly
|
|
// // Otherwise when we change iGain the entire I term would change dramatically
|
|
// integral += proportional * lastFrameTime * iGain;
|
|
// // Clamp the integral term into the allowed input range
|
|
// if (integral < minInput) { integral = minInput; }
|
|
// else if (integral > maxInput) { integral = maxInput; }
|
|
// if (derivativeOnMeasurement)
|
|
// {
|
|
// // Calculate how quickly the value is changing, then take the negative of it
|
|
// // This works due to the following:
|
|
// // P = target - current
|
|
// // dP/dt = d(target)/dt - d(current)/dt
|
|
// // Hence if we assume target is unchanging then...
|
|
// // dP/dt = -d(current)/dt
|
|
// // This eliminates spikes occuring when the target value changes
|
|
// derivative = (previousValue - currentValue) / lastFrameTime;
|
|
// }
|
|
// else
|
|
// {
|
|
// // Calculate how quickly the proportional value is changing
|
|
// derivative = (proportional - previousProportional) / lastFrameTime;
|
|
// }
|
|
// // Calculate the required input
|
|
// // We don't multiply by iGain here as we have already done it
|
|
// requiredInput = (proportional * pGain) + integral + (derivative * dGain);
|
|
// // Clamp the required input into the allowed input range
|
|
// if (requiredInput < minInput) { requiredInput = minInput; }
|
|
// else if (requiredInput > maxInput) { requiredInput = maxInput; }
|
|
// // Store this frame's values of the proportional and current value for use the next time this function is called
|
|
// previousProportional = proportional;
|
|
// previousValue = currentValue;
|
|
// // Return the calculated value
|
|
// return requiredInput;
|
|
//}
|
|
|
|
/// <summary>
|
|
/// Calculates the required input to move from the system from currentValue to targetValue.
|
|
/// lastFrameTime should be set to the time since this function was last called.
|
|
/// </summary>
|
|
/// <param name="targetValue"></param>
|
|
/// <param name="actualValue"></param>
|
|
/// <param name="lastFrameTime"></param>
|
|
/// <returns></returns>
|
|
public float RequiredInput(float targetValue, float currentValue, float lastFrameTime)
|
|
{
|
|
// Implements the basic PID algorithm
|
|
// First check that the target value passed in is not NaN (as this can cause long-lasting issues)
|
|
if (float.IsNaN(targetValue)) { targetValue = 0f; }
|
|
// Calculate the delta to the target value
|
|
proportional = targetValue - currentValue;
|
|
// Multiply by iGain here instead of at the return line, to allow tuning parameters on the fly
|
|
// Otherwise when we change iGain the entire I term would change dramatically
|
|
integralTimesIGain += proportional * lastFrameTime * iGain;
|
|
// Clamp the integral term into the allowed input range
|
|
if (integralTimesIGain < minInput) { integralTimesIGain = minInput; }
|
|
else if (integralTimesIGain > maxInput) { integralTimesIGain = maxInput; }
|
|
// Don't measure derivative on first system update
|
|
if (!firstUpdate)
|
|
{
|
|
if (derivativeOnMeasurement)
|
|
{
|
|
// Calculate how quickly the value is changing, then take the negative of it
|
|
// This works due to the following:
|
|
// P = target - current
|
|
// dP/dt = d(target)/dt - d(current)/dt
|
|
// Hence if we assume target is unchanging then...
|
|
// dP/dt = -d(current)/dt
|
|
// This eliminates spikes occuring when the target value changes
|
|
derivative = (previousValue - currentValue) / lastFrameTime;
|
|
}
|
|
else
|
|
{
|
|
// Calculate how quickly the proportional value is changing
|
|
derivative = (proportional - previousProportional) / lastFrameTime;
|
|
}
|
|
}
|
|
else { derivative = 0f; firstUpdate = false; }
|
|
// Multiply the terms by their respective gains
|
|
// We don't multiply by iGain here as we have already done it
|
|
proportionalTimesPGain = proportional * pGain;
|
|
derivativeTimesDGain = derivative * dGain;
|
|
// If necessary, clamp the individual terms
|
|
if (useIndividualInputLimits)
|
|
{
|
|
// Clamp the proportional term into the required range
|
|
if (proportionalTimesPGain < minProportionalInput) { proportionalTimesPGain = minProportionalInput; }
|
|
else if (proportionalTimesPGain > maxProportionalInput) { proportionalTimesPGain = maxProportionalInput; }
|
|
// Clamp the integral term into the required range
|
|
if (integralTimesIGain < minIntegralInput) { integralTimesIGain = minIntegralInput; }
|
|
else if (integralTimesIGain > maxIntegralInput) { integralTimesIGain = maxIntegralInput; }
|
|
// Clamp the derivative term into the required range
|
|
if (derivativeTimesDGain < minDerivativeInput) { derivativeTimesDGain = minDerivativeInput; }
|
|
else if (derivativeTimesDGain > maxDerivativeInput) { derivativeTimesDGain = maxDerivativeInput; }
|
|
}
|
|
// Calculate the required input
|
|
requiredInput = proportionalTimesPGain + integralTimesIGain + derivativeTimesDGain;
|
|
// Clamp the required input into the allowed input range
|
|
if (requiredInput < minInput) { requiredInput = minInput; }
|
|
else if (requiredInput > maxInput) { requiredInput = maxInput; }
|
|
// Store this frame's values of the proportional and current value for use the next time this function is called
|
|
previousProportional = proportional;
|
|
previousValue = currentValue;
|
|
// Return the calculated value
|
|
return requiredInput;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sets the input limits of the controller.
|
|
/// </summary>
|
|
/// <param name="minInputLimit"></param>
|
|
/// <param name="maxInputLimit"></param>
|
|
public void SetInputLimits(float minInputLimit, float maxInputLimit)
|
|
{
|
|
minInput = minInputLimit;
|
|
maxInput = maxInputLimit;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Set the individual input limits of the controller.
|
|
/// </summary>
|
|
/// <param name="minProportionalInputLimit"></param>
|
|
/// <param name="maxProportionalInputLimit"></param>
|
|
/// <param name="minIntegralInputLimit"></param>
|
|
/// <param name="maxIntegralInputLimit"></param>
|
|
/// <param name="minDerivativeInputLimit"></param>
|
|
/// <param name="maxDerivativeInputLimit"></param>
|
|
public void SetIndividualInputLimits(float minProportionalInputLimit, float maxProportionalInputLimit,
|
|
float minIntegralInputLimit, float maxIntegralInputLimit,
|
|
float minDerivativeInputLimit, float maxDerivativeInputLimit)
|
|
{
|
|
minProportionalInput = minProportionalInputLimit;
|
|
maxProportionalInput = maxProportionalInputLimit;
|
|
minIntegralInput = minIntegralInputLimit;
|
|
maxIntegralInput = maxIntegralInputLimit;
|
|
minDerivativeInput = minDerivativeInputLimit;
|
|
maxDerivativeInput = maxDerivativeInputLimit;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Resets state values of the controller.
|
|
/// </summary>
|
|
public void ResetController ()
|
|
{
|
|
// Reset state values. Integral accumulates over time and previousProportional/previousValue store previous values,
|
|
// so they need to be reset.
|
|
integralTimesIGain = 0f;
|
|
previousProportional = 0f;
|
|
previousValue = 0f;
|
|
// Remember that we have reset the controller for the next update
|
|
firstUpdate = true;
|
|
}
|
|
|
|
#endregion
|
|
}
|
|
}
|