PO/Library/PackageCache/com.unity.mathematics@1.1.0/Unity.Mathematics/Noise/cellular2D.cs

59 lines
2.5 KiB
C#
Raw Normal View History

2022-01-12 10:06:03 +03:00
// Cellular noise ("Worley noise") in 2D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// https://github.com/stegu/webgl-noise
using static Unity.Mathematics.math;
namespace Unity.Mathematics
{
public static partial class noise
{
// Cellular noise, returning F1 and F2 in a float2.
// Standard 3x3 search window for good F1 and F2 values
public static float2 cellular(float2 P)
{
const float K = 0.142857142857f; // 1/7
const float Ko = 0.428571428571f; // 3/7
const float jitter = 1.0f; // Less gives more regular pattern
float2 Pi = mod289(floor(P));
float2 Pf = frac(P);
float3 oi = float3(-1.0f, 0.0f, 1.0f);
float3 of = float3(-0.5f, 0.5f, 1.5f);
float3 px = permute(Pi.x + oi);
float3 p = permute(px.x + Pi.y + oi); // p11, p12, p13
float3 ox = frac(p * K) - Ko;
float3 oy = mod7(floor(p * K)) * K - Ko;
float3 dx = Pf.x + 0.5f + jitter * ox;
float3 dy = Pf.y - of + jitter * oy;
float3 d1 = dx * dx + dy * dy; // d11, d12 and d13, squared
p = permute(px.y + Pi.y + oi); // p21, p22, p23
ox = frac(p * K) - Ko;
oy = mod7(floor(p * K)) * K - Ko;
dx = Pf.x - 0.5f + jitter * ox;
dy = Pf.y - of + jitter * oy;
float3 d2 = dx * dx + dy * dy; // d21, d22 and d23, squared
p = permute(px.z + Pi.y + oi); // p31, p32, p33
ox = frac(p * K) - Ko;
oy = mod7(floor(p * K)) * K - Ko;
dx = Pf.x - 1.5f + jitter * ox;
dy = Pf.y - of + jitter * oy;
float3 d3 = dx * dx + dy * dy; // d31, d32 and d33, squared
// Sort out the two smallest distances (F1, F2)
float3 d1a = min(d1, d2);
d2 = max(d1, d2); // Swap to keep candidates for F2
d2 = min(d2, d3); // neither F1 nor F2 are now in d3
d1 = min(d1a, d2); // F1 is now in d1
d2 = max(d1a, d2); // Swap to keep candidates for F2
d1.xy = (d1.x < d1.y) ? d1.xy : d1.yx; // Swap if smaller
d1.xz = (d1.x < d1.z) ? d1.xz : d1.zx; // F1 is in d1.x
d1.yz = min(d1.yz, d2.yz); // F2 is now not in d2.yz
d1.y = min(d1.y, d1.z); // nor in d1.z
d1.y = min(d1.y, d2.x); // F2 is in d1.y, we're done.
return sqrt(d1.xy);
}
}
}