PO/Library/PackageCache/com.unity.2d.tilemap@1.0.0/Editor/GridEditorUtility.cs

578 lines
25 KiB
C#
Raw Normal View History

using System;
2022-01-12 10:06:03 +03:00
using System.Collections.Generic;
using UnityEditor;
using UnityEngine;
using UnityEngine.Tilemaps;
using Event = UnityEngine.Event;
namespace UnityEditor.Tilemaps
{
internal static class GridEditorUtility
{
private const int k_GridGizmoVertexCount = 32000;
private const float k_GridGizmoDistanceFalloff = 50f;
public static Vector3Int ClampToGrid(Vector3Int p, Vector2Int origin, Vector2Int gridSize)
{
return new Vector3Int(
Math.Max(Math.Min(p.x, origin.x + gridSize.x - 1), origin.x),
Math.Max(Math.Min(p.y, origin.y + gridSize.y - 1), origin.y),
p.z
);
}
public static Vector3 ScreenToLocal(Transform transform, Vector2 screenPosition)
{
return ScreenToLocal(transform, screenPosition, new Plane(transform.forward * -1f, transform.position));
}
public static Vector3 ScreenToLocal(Transform transform, Vector2 screenPosition, Plane plane)
{
Ray ray;
if (Camera.current.orthographic)
{
Vector2 screen = EditorGUIUtility.PointsToPixels(GUIClip.Unclip(screenPosition));
screen.y = Screen.height - screen.y;
Vector3 cameraWorldPoint = Camera.current.ScreenToWorldPoint(screen);
ray = new Ray(cameraWorldPoint, Camera.current.transform.forward);
}
else
{
ray = HandleUtility.GUIPointToWorldRay(screenPosition);
}
float result;
plane.Raycast(ray, out result);
Vector3 world = ray.GetPoint(result);
return transform.InverseTransformPoint(world);
}
public static RectInt GetMarqueeRect(Vector2Int p1, Vector2Int p2)
{
return new RectInt(
Math.Min(p1.x, p2.x),
Math.Min(p1.y, p2.y),
Math.Abs(p2.x - p1.x) + 1,
Math.Abs(p2.y - p1.y) + 1
);
}
public static BoundsInt GetMarqueeBounds(Vector3Int p1, Vector3Int p2)
{
return new BoundsInt(
Math.Min(p1.x, p2.x),
Math.Min(p1.y, p2.y),
Math.Min(p1.z, p2.z),
Math.Abs(p2.x - p1.x) + 1,
Math.Abs(p2.y - p1.y) + 1,
Math.Abs(p2.z - p1.z) + 1
);
}
// http://ericw.ca/notes/bresenhams-line-algorithm-in-csharp.html
public static IEnumerable<Vector2Int> GetPointsOnLine(Vector2Int p1, Vector2Int p2)
{
int x0 = p1.x;
int y0 = p1.y;
int x1 = p2.x;
int y1 = p2.y;
bool steep = Math.Abs(y1 - y0) > Math.Abs(x1 - x0);
if (steep)
{
int t;
t = x0; // swap x0 and y0
x0 = y0;
y0 = t;
t = x1; // swap x1 and y1
x1 = y1;
y1 = t;
}
if (x0 > x1)
{
int t;
t = x0; // swap x0 and x1
x0 = x1;
x1 = t;
t = y0; // swap y0 and y1
y0 = y1;
y1 = t;
}
int dx = x1 - x0;
int dy = Math.Abs(y1 - y0);
int error = dx / 2;
int ystep = (y0 < y1) ? 1 : -1;
int y = y0;
for (int x = x0; x <= x1; x++)
{
yield return new Vector2Int((steep ? y : x), (steep ? x : y));
error = error - dy;
if (error < 0)
{
y += ystep;
error += dx;
}
}
}
public static void DrawBatchedHorizontalLine(float x1, float x2, float y)
{
GL.Vertex3(x1, y, 0f);
GL.Vertex3(x2, y, 0f);
GL.Vertex3(x2, y + 1, 0f);
GL.Vertex3(x1, y + 1, 0f);
}
public static void DrawBatchedVerticalLine(float y1, float y2, float x)
{
GL.Vertex3(x, y1, 0f);
GL.Vertex3(x, y2, 0f);
GL.Vertex3(x + 1, y2, 0f);
GL.Vertex3(x + 1, y1, 0f);
}
public static void DrawBatchedLine(Vector3 p1, Vector3 p2)
{
GL.Vertex3(p1.x, p1.y, p1.z);
GL.Vertex3(p2.x, p2.y, p2.z);
}
public static void DrawLine(Vector2 p1, Vector2 p2, Color color)
{
if (Event.current.type != EventType.Repaint)
return;
HandleUtility.ApplyWireMaterial();
GL.PushMatrix();
GL.MultMatrix(GUI.matrix);
GL.Begin(GL.LINES);
GL.Color(color);
DrawBatchedLine(p1, p2);
GL.End();
GL.PopMatrix();
}
public static void DrawBox(Rect r, Color color)
{
if (Event.current.type != EventType.Repaint)
return;
HandleUtility.ApplyWireMaterial();
GL.PushMatrix();
GL.MultMatrix(GUI.matrix);
GL.Begin(GL.LINES);
GL.Color(color);
DrawBatchedLine(new Vector3(r.xMin, r.yMin, 0f), new Vector3(r.xMax, r.yMin, 0f));
DrawBatchedLine(new Vector3(r.xMax, r.yMin, 0f), new Vector3(r.xMax, r.yMax, 0f));
DrawBatchedLine(new Vector3(r.xMax, r.yMax, 0f), new Vector3(r.xMin, r.yMax, 0f));
DrawBatchedLine(new Vector3(r.xMin, r.yMax, 0f), new Vector3(r.xMin, r.yMin, 0f));
GL.End();
GL.PopMatrix();
}
public static void DrawFilledBox(Rect r, Color color)
{
if (Event.current.type != EventType.Repaint)
return;
HandleUtility.ApplyWireMaterial();
GL.PushMatrix();
GL.MultMatrix(GUI.matrix);
GL.Begin(GL.QUADS);
GL.Color(color);
GL.Vertex3(r.xMin, r.yMin, 0f);
GL.Vertex3(r.xMax, r.yMin, 0f);
GL.Vertex3(r.xMax, r.yMax, 0f);
GL.Vertex3(r.xMin, r.yMax, 0f);
GL.End();
GL.PopMatrix();
}
public static void DrawGridMarquee(GridLayout gridLayout, BoundsInt area, Color color)
{
switch (gridLayout.cellLayout)
{
case GridLayout.CellLayout.Hexagon:
DrawSelectedHexGridArea(gridLayout, area, color);
break;
case GridLayout.CellLayout.Isometric:
case GridLayout.CellLayout.IsometricZAsY:
case GridLayout.CellLayout.Rectangle:
var cellStride = gridLayout.cellSize + gridLayout.cellGap;
var cellGap = Vector3.one;
if (!Mathf.Approximately(cellStride.x, 0f))
{
cellGap.x = gridLayout.cellSize.x / cellStride.x;
}
if (!Mathf.Approximately(cellStride.y, 0f))
{
cellGap.y = gridLayout.cellSize.y / cellStride.y;
}
Vector3[] cellLocals =
{
gridLayout.CellToLocal(new Vector3Int(area.xMin, area.yMin, area.zMin)),
gridLayout.CellToLocalInterpolated(new Vector3(area.xMax - 1 + cellGap.x, area.yMin, area.zMin)),
gridLayout.CellToLocalInterpolated(new Vector3(area.xMax - 1 + cellGap.x, area.yMax - 1 + cellGap.y, area.zMin)),
gridLayout.CellToLocalInterpolated(new Vector3(area.xMin, area.yMax - 1 + cellGap.y, area.zMin))
};
HandleUtility.ApplyWireMaterial();
GL.PushMatrix();
GL.MultMatrix(gridLayout.transform.localToWorldMatrix);
GL.Begin(GL.LINES);
GL.Color(color);
int i = 0;
for (int j = cellLocals.Length - 1; i < cellLocals.Length; j = i++)
DrawBatchedLine(cellLocals[j], cellLocals[i]);
GL.End();
GL.PopMatrix();
break;
}
}
public static void DrawSelectedHexGridArea(GridLayout gridLayout, BoundsInt area, Color color)
{
int requiredVertices = 4 * (area.size.x + area.size.y) - 2;
if (requiredVertices < 0)
return;
Vector3[] cellLocals = new Vector3[requiredVertices];
int horizontalCount = area.size.x * 2;
int verticalCount = area.size.y * 2 - 1;
int bottom = 0;
int top = horizontalCount + verticalCount + horizontalCount - 1;
int left = requiredVertices - 1;
int right = horizontalCount;
Vector3[] cellOffset =
{
Grid.Swizzle(gridLayout.cellSwizzle, new Vector3(0, gridLayout.cellSize.y / 2, area.zMin)),
Grid.Swizzle(gridLayout.cellSwizzle, new Vector3(gridLayout.cellSize.x / 2, gridLayout.cellSize.y / 4, area.zMin)),
Grid.Swizzle(gridLayout.cellSwizzle, new Vector3(gridLayout.cellSize.x / 2, -gridLayout.cellSize.y / 4, area.zMin)),
Grid.Swizzle(gridLayout.cellSwizzle, new Vector3(0, -gridLayout.cellSize.y / 2, area.zMin)),
Grid.Swizzle(gridLayout.cellSwizzle, new Vector3(-gridLayout.cellSize.x / 2, -gridLayout.cellSize.y / 4, area.zMin)),
Grid.Swizzle(gridLayout.cellSwizzle, new Vector3(-gridLayout.cellSize.x / 2, gridLayout.cellSize.y / 4, area.zMin))
};
// Fill Top and Bottom Vertices
for (int x = area.min.x; x < area.max.x; x++)
{
cellLocals[bottom++] = gridLayout.CellToLocal(new Vector3Int(x, area.min.y, area.zMin)) + cellOffset[4];
cellLocals[bottom++] = gridLayout.CellToLocal(new Vector3Int(x, area.min.y, area.zMin)) + cellOffset[3];
cellLocals[top--] = gridLayout.CellToLocal(new Vector3Int(x, area.max.y - 1, area.zMin)) + cellOffset[0];
cellLocals[top--] = gridLayout.CellToLocal(new Vector3Int(x, area.max.y - 1, area.zMin)) + cellOffset[1];
}
// Fill first Left and Right Vertices
cellLocals[left--] = gridLayout.CellToLocal(new Vector3Int(area.min.x, area.min.y, area.zMin)) + cellOffset[5];
cellLocals[top--] = gridLayout.CellToLocal(new Vector3Int(area.max.x - 1, area.max.y - 1, area.zMin)) + cellOffset[2];
// Fill Left and Right Vertices
for (int y = area.min.y + 1; y < area.max.y; y++)
{
cellLocals[left--] = gridLayout.CellToLocal(new Vector3Int(area.min.x, y, area.zMin)) + cellOffset[4];
cellLocals[left--] = gridLayout.CellToLocal(new Vector3Int(area.min.x, y, area.zMin)) + cellOffset[5];
}
for (int y = area.min.y; y < (area.max.y - 1); y++)
{
cellLocals[right++] = gridLayout.CellToLocal(new Vector3Int(area.max.x - 1, y, area.zMin)) + cellOffset[2];
cellLocals[right++] = gridLayout.CellToLocal(new Vector3Int(area.max.x - 1, y, area.zMin)) + cellOffset[1];
}
HandleUtility.ApplyWireMaterial();
GL.PushMatrix();
GL.MultMatrix(gridLayout.transform.localToWorldMatrix);
GL.Begin(GL.LINES);
GL.Color(color);
int i = 0;
for (int j = cellLocals.Length - 1; i < cellLocals.Length; j = i++)
{
DrawBatchedLine(cellLocals[j], cellLocals[i]);
}
GL.End();
GL.PopMatrix();
}
public static void DrawGridGizmo(GridLayout gridLayout, Transform transform, Color color, ref Mesh gridMesh, ref Material gridMaterial)
{
// TODO: Hook this up with DrawGrid
if (Event.current.type != EventType.Repaint)
return;
if (gridMesh == null)
gridMesh = GenerateCachedGridMesh(gridLayout, color);
if (gridMaterial == null)
{
gridMaterial = (Material)EditorGUIUtility.LoadRequired("SceneView/GridGap.mat");
}
if (gridLayout.cellLayout == GridLayout.CellLayout.Hexagon)
{
gridMaterial.SetVector("_Gap", new Vector4(1f, 1f / 3f, 1f, 1f));
gridMaterial.SetVector("_Stride", new Vector4(1f, 1f, 1f, 1f));
}
else
{
gridMaterial.SetVector("_Gap", gridLayout.cellSize);
gridMaterial.SetVector("_Stride", gridLayout.cellGap + gridLayout.cellSize);
}
gridMaterial.SetPass(0);
GL.PushMatrix();
if (gridMesh.GetTopology(0) == MeshTopology.Lines)
GL.Begin(GL.LINES);
else
GL.Begin(GL.QUADS);
Graphics.DrawMeshNow(gridMesh, transform.localToWorldMatrix);
GL.End();
GL.PopMatrix();
}
public static Vector3 GetSpriteWorldSize(Sprite sprite)
{
if (sprite != null && sprite.rect.size.magnitude > 0f)
{
return new Vector3(
sprite.rect.size.x / sprite.pixelsPerUnit,
sprite.rect.size.y / sprite.pixelsPerUnit,
1f
);
}
return Vector3.one;
}
private static Mesh GenerateCachedGridMesh(GridLayout gridLayout, Color color)
{
switch (gridLayout.cellLayout)
{
case GridLayout.CellLayout.Hexagon:
return GenerateCachedHexagonalGridMesh(gridLayout, color);
case GridLayout.CellLayout.Isometric:
case GridLayout.CellLayout.IsometricZAsY:
case GridLayout.CellLayout.Rectangle:
int min = k_GridGizmoVertexCount / -32;
int max = min * -1;
int numCells = max - min;
RectInt bounds = new RectInt(min, min, numCells, numCells);
return GenerateCachedGridMesh(gridLayout, color, 0f, bounds, MeshTopology.Lines);
}
return null;
}
public static Mesh GenerateCachedGridMesh(GridLayout gridLayout, Color color, float screenPixelSize, RectInt bounds, MeshTopology topology)
{
Mesh mesh = new Mesh();
mesh.hideFlags = HideFlags.HideAndDontSave;
int vertex = 0;
int totalVertices = topology == MeshTopology.Quads ?
8 * (bounds.size.x + bounds.size.y) :
4 * (bounds.size.x + bounds.size.y);
Vector3 horizontalPixelOffset = new Vector3(screenPixelSize, 0f, 0f);
Vector3 verticalPixelOffset = new Vector3(0f, screenPixelSize, 0f);
Vector3[] vertices = new Vector3[totalVertices];
Vector2[] uvs2 = new Vector2[totalVertices];
Vector3 cellStride = gridLayout.cellSize + gridLayout.cellGap;
Vector3Int minPosition = new Vector3Int(0, bounds.min.y, 0);
Vector3Int maxPosition = new Vector3Int(0, bounds.max.y, 0);
Vector3 cellGap = Vector3.zero;
if (!Mathf.Approximately(cellStride.x, 0f))
{
cellGap.x = gridLayout.cellSize.x / cellStride.x;
}
for (int x = bounds.min.x; x < bounds.max.x; x++)
{
minPosition.x = x;
maxPosition.x = x;
vertices[vertex + 0] = gridLayout.CellToLocal(minPosition);
vertices[vertex + 1] = gridLayout.CellToLocal(maxPosition);
uvs2[vertex + 0] = Vector2.zero;
uvs2[vertex + 1] = new Vector2(0f, cellStride.y * bounds.size.y);
if (topology == MeshTopology.Quads)
{
vertices[vertex + 2] = gridLayout.CellToLocal(maxPosition) + horizontalPixelOffset;
vertices[vertex + 3] = gridLayout.CellToLocal(minPosition) + horizontalPixelOffset;
uvs2[vertex + 2] = new Vector2(0f, cellStride.y * bounds.size.y);
uvs2[vertex + 3] = Vector2.zero;
}
vertex += topology == MeshTopology.Quads ? 4 : 2;
vertices[vertex + 0] = gridLayout.CellToLocalInterpolated(minPosition + cellGap);
vertices[vertex + 1] = gridLayout.CellToLocalInterpolated(maxPosition + cellGap);
uvs2[vertex + 0] = Vector2.zero;
uvs2[vertex + 1] = new Vector2(0f, cellStride.y * bounds.size.y);
if (topology == MeshTopology.Quads)
{
vertices[vertex + 2] = gridLayout.CellToLocalInterpolated(maxPosition + cellGap) + horizontalPixelOffset;
vertices[vertex + 3] = gridLayout.CellToLocalInterpolated(minPosition + cellGap) + horizontalPixelOffset;
uvs2[vertex + 2] = new Vector2(0f, cellStride.y * bounds.size.y);
uvs2[vertex + 3] = Vector2.zero;
}
vertex += topology == MeshTopology.Quads ? 4 : 2;
}
minPosition = new Vector3Int(bounds.min.x, 0, 0);
maxPosition = new Vector3Int(bounds.max.x, 0, 0);
cellGap = Vector3.zero;
if (!Mathf.Approximately(cellStride.y, 0f))
{
cellGap.y = gridLayout.cellSize.y / cellStride.y;
}
for (int y = bounds.min.y; y < bounds.max.y; y++)
{
minPosition.y = y;
maxPosition.y = y;
vertices[vertex + 0] = gridLayout.CellToLocal(minPosition);
vertices[vertex + 1] = gridLayout.CellToLocal(maxPosition);
uvs2[vertex + 0] = Vector2.zero;
uvs2[vertex + 1] = new Vector2(cellStride.x * bounds.size.x, 0f);
if (topology == MeshTopology.Quads)
{
vertices[vertex + 2] = gridLayout.CellToLocal(maxPosition) + verticalPixelOffset;
vertices[vertex + 3] = gridLayout.CellToLocal(minPosition) + verticalPixelOffset;
uvs2[vertex + 2] = new Vector2(cellStride.x * bounds.size.x, 0f);
uvs2[vertex + 3] = Vector2.zero;
}
vertex += topology == MeshTopology.Quads ? 4 : 2;
vertices[vertex + 0] = gridLayout.CellToLocalInterpolated(minPosition + cellGap);
vertices[vertex + 1] = gridLayout.CellToLocalInterpolated(maxPosition + cellGap);
uvs2[vertex + 0] = Vector2.zero;
uvs2[vertex + 1] = new Vector2(cellStride.x * bounds.size.x, 0f);
if (topology == MeshTopology.Quads)
{
vertices[vertex + 2] = gridLayout.CellToLocalInterpolated(maxPosition + cellGap) + verticalPixelOffset;
vertices[vertex + 3] = gridLayout.CellToLocalInterpolated(minPosition + cellGap) + verticalPixelOffset;
uvs2[vertex + 2] = new Vector2(cellStride.x * bounds.size.x, 0f);
uvs2[vertex + 3] = Vector2.zero;
}
vertex += topology == MeshTopology.Quads ? 4 : 2;
}
var uv0 = new Vector2(k_GridGizmoDistanceFalloff, 0f);
var uvs = new Vector2[vertex];
var indices = new int[vertex];
var colors = new Color[vertex];
var normals = new Vector3[totalVertices]; // Normal channel stores the position of the other end point of the line.
var uvs3 = new Vector2[totalVertices]; // UV3 channel stores the UV2 value of the other end point of the line.
for (int i = 0; i < vertex; i++)
{
uvs[i] = uv0;
indices[i] = i;
colors[i] = color;
var alternate = i + ((i % 2) == 0 ? 1 : -1);
normals[i] = vertices[alternate];
uvs3[i] = uvs2[alternate];
}
mesh.vertices = vertices;
mesh.uv = uvs;
mesh.uv2 = uvs2;
mesh.uv3 = uvs3;
mesh.colors = colors;
mesh.normals = normals;
mesh.SetIndices(indices, topology, 0);
return mesh;
}
private static Mesh GenerateCachedHexagonalGridMesh(GridLayout gridLayout, Color color)
{
Mesh mesh = new Mesh();
mesh.hideFlags = HideFlags.HideAndDontSave;
int vertex = 0;
int max = k_GridGizmoVertexCount / (2 * (6 * 2));
max = (max / 4) * 4;
int min = -max;
float numVerticalCells = 6 * (max / 4);
int totalVertices = max * 2 * 6 * 2;
var cellStrideY = gridLayout.cellGap.y + gridLayout.cellSize.y;
var cellOffsetY = gridLayout.cellSize.y / 2;
var hexOffset = (1.0f / 3.0f);
var drawTotal = numVerticalCells * 2.0f * hexOffset;
var drawDiagTotal = 2 * drawTotal;
Vector3[] vertices = new Vector3[totalVertices];
Vector2[] uvs2 = new Vector2[totalVertices];
// Draw Vertical Lines
for (int x = min; x < max; x++)
{
vertices[vertex] = gridLayout.CellToLocal(new Vector3Int(x, min, 0));
vertices[vertex + 1] = gridLayout.CellToLocal(new Vector3Int(x, max, 0));
uvs2[vertex] = new Vector2(0f, 2 * hexOffset);
uvs2[vertex + 1] = new Vector2(0f, 2 * hexOffset + drawTotal);
vertex += 2;
// Alternate Row Offset
vertices[vertex] = gridLayout.CellToLocal(new Vector3Int(x, min - 1, 0));
vertices[vertex + 1] = gridLayout.CellToLocal(new Vector3Int(x, max - 1, 0));
uvs2[vertex] = new Vector2(0f, 2 * hexOffset);
uvs2[vertex + 1] = new Vector2(0f, 2 * hexOffset + drawTotal);
vertex += 2;
}
// Draw Diagonals
for (int y = min; y < max; y++)
{
float drawDiagOffset = ((y + 1) % 3) * hexOffset;
var cellOffSet = Grid.Swizzle(gridLayout.cellSwizzle, new Vector3(0f, y * cellStrideY + cellOffsetY, 0.0f));
// Slope Up
vertices[vertex] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * min), min, 0)) + cellOffSet;
vertices[vertex + 1] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * max), max, 0)) + cellOffSet;
uvs2[vertex] = new Vector2(0f, drawDiagOffset);
uvs2[vertex + 1] = new Vector2(0f, drawDiagOffset + drawDiagTotal);
vertex += 2;
// Slope Down
vertices[vertex] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * max), min, 0)) + cellOffSet;
vertices[vertex + 1] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * min), max, 0)) + cellOffSet;
uvs2[vertex] = new Vector2(0f, drawDiagOffset);
uvs2[vertex + 1] = new Vector2(0f, drawDiagOffset + drawDiagTotal);
vertex += 2;
// Alternate Row Offset
vertices[vertex] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * min) + 1, min, 0)) + cellOffSet;
vertices[vertex + 1] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * max) + 1, max, 0)) + cellOffSet;
uvs2[vertex] = new Vector2(0f, drawDiagOffset);
uvs2[vertex + 1] = new Vector2(0f, drawDiagOffset + drawDiagTotal);
vertex += 2;
vertices[vertex] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * max) + 1, min, 0)) + cellOffSet;
vertices[vertex + 1] = gridLayout.CellToLocal(new Vector3Int(Mathf.RoundToInt(1.5f * min) + 1, max, 0)) + cellOffSet;
uvs2[vertex] = new Vector2(0f, drawDiagOffset);
uvs2[vertex + 1] = new Vector2(0f, drawDiagOffset + drawDiagTotal);
vertex += 2;
}
var uv0 = new Vector2(k_GridGizmoDistanceFalloff, 0f);
var indices = new int[totalVertices];
var uvs = new Vector2[totalVertices];
var colors = new Color[totalVertices];
var normals = new Vector3[totalVertices]; // Normal channel stores the position of the other end point of the line.
var uvs3 = new Vector2[totalVertices]; // UV3 channel stores the UV2 value of the other end point of the line.
for (int i = 0; i < totalVertices; i++)
{
uvs[i] = uv0;
indices[i] = i;
colors[i] = color;
var alternate = i + ((i % 2) == 0 ? 1 : -1);
normals[i] = vertices[alternate];
uvs3[i] = uvs2[alternate];
}
mesh.vertices = vertices;
mesh.uv = uvs;
mesh.uv2 = uvs2;
mesh.uv3 = uvs3;
mesh.colors = colors;
mesh.normals = normals;
mesh.SetIndices(indices, MeshTopology.Lines, 0);
return mesh;
}
}
}