using static Unity.Mathematics.math; namespace Unity.Mathematics { public static partial class noise { // Modulo 289 without a division (only multiplications) static float mod289(float x) { return x - floor(x * (1.0f / 289.0f)) * 289.0f; } static float2 mod289(float2 x) { return x - floor(x * (1.0f / 289.0f)) * 289.0f; } static float3 mod289(float3 x) { return x - floor(x * (1.0f / 289.0f)) * 289.0f; } static float4 mod289(float4 x) { return x - floor(x * (1.0f / 289.0f)) * 289.0f; } // Modulo 7 without a division static float3 mod7(float3 x) { return x - floor(x * (1.0f / 7.0f)) * 7.0f; } static float4 mod7(float4 x) { return x - floor(x * (1.0f / 7.0f)) * 7.0f; } // Permutation polynomial: (34x^2 + x) math.mod 289 static float permute(float x) { return mod289((34.0f * x + 1.0f) * x); } static float3 permute(float3 x) { return mod289((34.0f * x + 1.0f) * x); } static float4 permute(float4 x) { return mod289((34.0f * x + 1.0f) * x); } static float taylorInvSqrt(float r) { return 1.79284291400159f - 0.85373472095314f * r; } static float4 taylorInvSqrt(float4 r) { return 1.79284291400159f - 0.85373472095314f * r; } static float2 fade(float2 t) { return t*t*t*(t*(t*6.0f-15.0f)+10.0f); } static float3 fade(float3 t) { return t*t*t*(t*(t*6.0f-15.0f)+10.0f); } static float4 fade(float4 t) { return t*t*t*(t*(t*6.0f-15.0f)+10.0f); } static float4 grad4(float j, float4 ip) { float4 ones = float4(1.0f, 1.0f, 1.0f, -1.0f); float3 pxyz = floor(frac(float3(j) * ip.xyz) * 7.0f) * ip.z - 1.0f; float pw = 1.5f - dot(abs(pxyz), ones.xyz); float4 p = float4(pxyz, pw); float4 s = float4(p < 0.0f); p.xyz = p.xyz + (s.xyz*2.0f - 1.0f) * s.www; return p; } // Hashed 2-D gradients with an extra rotation. // (The constant 0.0243902439 is 1/41) static float2 rgrad2(float2 p, float rot) { // For more isotropic gradients, math.sin/math.cos can be used instead. float u = permute(permute(p.x) + p.y) * 0.0243902439f + rot; // Rotate by shift u = frac(u) * 6.28318530718f; // 2*pi return float2(cos(u), sin(u)); } } }