// Cellular noise ("Worley noise") in 3D in GLSL. // Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved. // This code is released under the conditions of the MIT license. // See LICENSE file for details. // https://github.com/stegu/webgl-noise using static Unity.Mathematics.math; namespace Unity.Mathematics { public static partial class noise { // Cellular noise, returning F1 and F2 in a float2. // Speeded up by umath.sing 2x2x2 search window instead of 3x3x3, // at the expense of some pattern artifacts. // F2 is often wrong and has sharp discontinuities. // If you need a good F2, use the slower 3x3x3 version. public static float2 cellular2x2x2(float3 P) { const float K = 0.142857142857f; // 1/7 const float Ko = 0.428571428571f; // 1/2-K/2 const float K2 = 0.020408163265306f; // 1/(7*7) const float Kz = 0.166666666667f; // 1/6 const float Kzo = 0.416666666667f; // 1/2-1/6*2 const float jitter = 0.8f; // smaller jitter gives less errors in F2 float3 Pi = mod289(floor(P)); float3 Pf = frac(P); float4 Pfx = Pf.x + float4(0.0f, -1.0f, 0.0f, -1.0f); float4 Pfy = Pf.y + float4(0.0f, 0.0f, -1.0f, -1.0f); float4 p = permute(Pi.x + float4(0.0f, 1.0f, 0.0f, 1.0f)); p = permute(p + Pi.y + float4(0.0f, 0.0f, 1.0f, 1.0f)); float4 p1 = permute(p + Pi.z); // z+0 float4 p2 = permute(p + Pi.z + float4(1.0f,1.0f,1.0f,1.0f)); // z+1 float4 ox1 = frac(p1 * K) - Ko; float4 oy1 = mod7(floor(p1 * K)) * K - Ko; float4 oz1 = floor(p1 * K2) * Kz - Kzo; // p1 < 289 guaranteed float4 ox2 = frac(p2 * K) - Ko; float4 oy2 = mod7(floor(p2 * K)) * K - Ko; float4 oz2 = floor(p2 * K2) * Kz - Kzo; float4 dx1 = Pfx + jitter * ox1; float4 dy1 = Pfy + jitter * oy1; float4 dz1 = Pf.z + jitter * oz1; float4 dx2 = Pfx + jitter * ox2; float4 dy2 = Pfy + jitter * oy2; float4 dz2 = Pf.z - 1.0f + jitter * oz2; float4 d1 = dx1 * dx1 + dy1 * dy1 + dz1 * dz1; // z+0 float4 d2 = dx2 * dx2 + dy2 * dy2 + dz2 * dz2; // z+1 // Sort out the two smallest distances (F1, F2) // Do it right and sort out both F1 and F2 float4 d = min(d1,d2); // F1 is now in d d2 = max(d1,d2); // Make sure we keep all candidates for F2 d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap smallest to d.x d.xz = (d.x < d.z) ? d.xz : d.zx; d.xw = (d.x < d.w) ? d.xw : d.wx; // F1 is now in d.x d.yzw = min(d.yzw, d2.yzw); // F2 now not in d2.yzw d.y = min(d.y, d.z); // nor in d.z d.y = min(d.y, d.w); // nor in d.w d.y = min(d.y, d2.x); // F2 is now in d.y return sqrt(d.xy); // F1 and F2 } } }