using System.Runtime.CompilerServices; using static Unity.Mathematics.math; namespace Unity.Mathematics { public partial struct float2x2 { /// Returns a float2x2 matrix representing a counter-clockwise rotation of angle degrees. public static float2x2 Rotate(float angle) { float s, c; sincos(angle, out s, out c); return float2x2(c, -s, s, c); } /// Returns a float2x2 matrix representing a uniform scaling of both axes by s. public static float2x2 Scale(float s) { return float2x2(s, 0.0f, 0.0f, s); } /// Returns a float2x2 matrix representing a non-uniform axis scaling by x and y. public static float2x2 Scale(float x, float y) { return float2x2(x, 0.0f, 0.0f, y); } /// Returns a float2x2 matrix representing a non-uniform axis scaling by the components of the float2 vector v. public static float2x2 Scale(float2 v) { return Scale(v.x, v.y); } } public partial struct float3x3 { /// Constructs a float3x3 matrix from a unit quaternion. public float3x3(quaternion q) { float4 v = q.value; float4 v2 = v + v; uint3 npn = uint3(0x80000000, 0x00000000, 0x80000000); uint3 nnp = uint3(0x80000000, 0x80000000, 0x00000000); uint3 pnn = uint3(0x00000000, 0x80000000, 0x80000000); c0 = v2.y * asfloat(asuint(v.yxw) ^ npn) - v2.z * asfloat(asuint(v.zwx) ^ pnn) + float3(1, 0, 0); c1 = v2.z * asfloat(asuint(v.wzy) ^ nnp) - v2.x * asfloat(asuint(v.yxw) ^ npn) + float3(0, 1, 0); c2 = v2.x * asfloat(asuint(v.zwx) ^ pnn) - v2.y * asfloat(asuint(v.wzy) ^ nnp) + float3(0, 0, 1); } /// /// Returns a float3x3 matrix representing a rotation around a unit axis by an angle in radians. /// The rotation direction is clockwise when looking along the rotation axis towards the origin. /// public static float3x3 AxisAngle(float3 axis, float angle) { float sina, cosa; math.sincos(angle, out sina, out cosa); float3 u = axis; float3 u_yzx = u.yzx; float3 u_zxy = u.zxy; float3 u_inv_cosa = u - u * cosa; // u * (1.0f - cosa); float4 t = float4(u * sina, cosa); uint3 ppn = uint3(0x00000000, 0x00000000, 0x80000000); uint3 npp = uint3(0x80000000, 0x00000000, 0x00000000); uint3 pnp = uint3(0x00000000, 0x80000000, 0x00000000); return float3x3( u.x * u_inv_cosa + asfloat(asuint(t.wzy) ^ ppn), u.y * u_inv_cosa + asfloat(asuint(t.zwx) ^ npp), u.z * u_inv_cosa + asfloat(asuint(t.yxw) ^ pnp) ); /* return float3x3( cosa + u.x * u.x * (1.0f - cosa), u.y * u.x * (1.0f - cosa) - u.z * sina, u.z * u.x * (1.0f - cosa) + u.y * sina, u.x * u.y * (1.0f - cosa) + u.z * sina, cosa + u.y * u.y * (1.0f - cosa), u.y * u.z * (1.0f - cosa) - u.x * sina, u.x * u.z * (1.0f - cosa) - u.y * sina, u.y * u.z * (1.0f - cosa) + u.x * sina, cosa + u.z * u.z * (1.0f - cosa) ); */ } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the x-axis, then the y-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float3x3 EulerXYZ(float3 xyz) { // return mul(rotateZ(xyz.z), mul(rotateY(xyz.y), rotateX(xyz.x))); float3 s, c; sincos(xyz, out s, out c); return float3x3( c.y * c.z, c.z * s.x * s.y - c.x * s.z, c.x * c.z * s.y + s.x * s.z, c.y * s.z, c.x * c.z + s.x * s.y * s.z, c.x * s.y * s.z - c.z * s.x, -s.y, c.y * s.x, c.x * c.y ); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the x-axis, then the z-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float3x3 EulerXZY(float3 xyz) { // return mul(rotateY(xyz.y), mul(rotateZ(xyz.z), rotateX(xyz.x))); } float3 s, c; sincos(xyz, out s, out c); return float3x3( c.y * c.z, s.x * s.y - c.x * c.y * s.z, c.x * s.y + c.y * s.x * s.z, s.z, c.x * c.z, -c.z * s.x, -c.z * s.y, c.y * s.x + c.x * s.y * s.z, c.x * c.y - s.x * s.y * s.z ); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the y-axis, then the x-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float3x3 EulerYXZ(float3 xyz) { // return mul(rotateZ(xyz.z), mul(rotateX(xyz.x), rotateY(xyz.y))); float3 s, c; sincos(xyz, out s, out c); return float3x3( c.y * c.z - s.x * s.y * s.z, -c.x * s.z, c.z * s.y + c.y * s.x * s.z, c.z * s.x * s.y + c.y * s.z, c.x * c.z, s.y * s.z - c.y * c.z * s.x, -c.x * s.y, s.x, c.x * c.y ); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the y-axis, then the z-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float3x3 EulerYZX(float3 xyz) { // return mul(rotateX(xyz.x), mul(rotateZ(xyz.z), rotateY(xyz.y))); float3 s, c; sincos(xyz, out s, out c); return float3x3( c.y * c.z, -s.z, c.z * s.y, s.x * s.y + c.x * c.y * s.z, c.x * c.z, c.x * s.y * s.z - c.y * s.x, c.y * s.x * s.z - c.x * s.y, c.z * s.x, c.x * c.y + s.x * s.y * s.z ); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the z-axis, then the x-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// This is the default order rotation order in Unity. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float3x3 EulerZXY(float3 xyz) { // return mul(rotateY(xyz.y), mul(rotateX(xyz.x), rotateZ(xyz.z))); float3 s, c; sincos(xyz, out s, out c); return float3x3( c.y * c.z + s.x * s.y * s.z, c.z * s.x * s.y - c.y * s.z, c.x * s.y, c.x * s.z, c.x * c.z, -s.x, c.y * s.x * s.z - c.z * s.y, c.y * c.z * s.x + s.y * s.z, c.x * c.y ); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the z-axis, then the y-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float3x3 EulerZYX(float3 xyz) { // return mul(rotateX(xyz.x), mul(rotateY(xyz.y), rotateZ(xyz.z))); float3 s, c; sincos(xyz, out s, out c); return float3x3( c.y * c.z, -c.y * s.z, s.y, c.z * s.x * s.y + c.x * s.z, c.x * c.z - s.x * s.y * s.z, -c.y * s.x, s.x * s.z - c.x * c.z * s.y, c.z * s.x + c.x * s.y * s.z, c.x * c.y ); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the x-axis, then the y-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float3x3 EulerXYZ(float x, float y, float z) { return EulerXYZ(float3(x, y, z)); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the x-axis, then the z-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float3x3 EulerXZY(float x, float y, float z) { return EulerXZY(float3(x, y, z)); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the y-axis, then the x-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float3x3 EulerYXZ(float x, float y, float z) { return EulerYXZ(float3(x, y, z)); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the y-axis, then the z-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float3x3 EulerYZX(float x, float y, float z) { return EulerYZX(float3(x, y, z)); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the z-axis, then the x-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// This is the default order rotation order in Unity. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float3x3 EulerZXY(float x, float y, float z) { return EulerZXY(float3(x, y, z)); } /// /// Returns a float3x3 rotation matrix constructed by first performing a rotation around the z-axis, then the y-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float3x3 EulerZYX(float x, float y, float z) { return EulerZYX(float3(x, y, z)); } /// /// Returns a float3x3 rotation matrix constructed by first performing 3 rotations around the principal axes in a given order. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// When the rotation order is known at compile time, it is recommended for performance reasons to use specific /// Euler rotation constructors such as EulerZXY(...). /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. /// The order in which the rotations are applied. public static float3x3 Euler(float3 xyz, RotationOrder order = RotationOrder.Default) { switch (order) { case RotationOrder.XYZ: return EulerXYZ(xyz); case RotationOrder.XZY: return EulerXZY(xyz); case RotationOrder.YXZ: return EulerYXZ(xyz); case RotationOrder.YZX: return EulerYZX(xyz); case RotationOrder.ZXY: return EulerZXY(xyz); case RotationOrder.ZYX: return EulerZYX(xyz); default: return float3x3.identity; } } /// /// Returns a float3x3 rotation matrix constructed by first performing 3 rotations around the principal axes in a given order. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// When the rotation order is known at compile time, it is recommended for performance reasons to use specific /// Euler rotation constructors such as EulerZXY(...). /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. /// The order in which the rotations are applied. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float3x3 Euler(float x, float y, float z, RotationOrder order = RotationOrder.Default) { return Euler(float3(x, y, z), order); } /// Returns a float4x4 matrix that rotates around the x-axis by a given number of radians. /// The clockwise rotation angle when looking along the x-axis towards the origin in radians. public static float3x3 RotateX(float angle) { // {{1, 0, 0}, {0, c_0, -s_0}, {0, s_0, c_0}} float s, c; sincos(angle, out s, out c); return float3x3(1.0f, 0.0f, 0.0f, 0.0f, c, -s, 0.0f, s, c); } /// Returns a float4x4 matrix that rotates around the y-axis by a given number of radians. /// The clockwise rotation angle when looking along the y-axis towards the origin in radians. public static float3x3 RotateY(float angle) { // {{c_1, 0, s_1}, {0, 1, 0}, {-s_1, 0, c_1}} float s, c; sincos(angle, out s, out c); return float3x3(c, 0.0f, s, 0.0f, 1.0f, 0.0f, -s, 0.0f, c); } /// Returns a float4x4 matrix that rotates around the z-axis by a given number of radians. /// The clockwise rotation angle when looking along the z-axis towards the origin in radians. public static float3x3 RotateZ(float angle) { // {{c_2, -s_2, 0}, {s_2, c_2, 0}, {0, 0, 1}} float s, c; sincos(angle, out s, out c); return float3x3(c, -s, 0.0f, s, c, 0.0f, 0.0f, 0.0f, 1.0f); } //Returns a float3x3 matrix representing a uniform scaling of all axes by s. public static float3x3 Scale(float s) { return float3x3(s, 0.0f, 0.0f, 0.0f, s, 0.0f, 0.0f, 0.0f, s); } /// Returns a float3x3 matrix representing a non-uniform axis scaling by x, y and z. public static float3x3 Scale(float x, float y, float z) { return float3x3(x, 0.0f, 0.0f, 0.0f, y, 0.0f, 0.0f, 0.0f, z); } /// Returns a float3x3 matrix representing a non-uniform axis scaling by the components of the float3 vector v. public static float3x3 Scale(float3 v) { return Scale(v.x, v.y, v.z); } /// /// Returns a float3x3 view rotation matrix given a unit length forward vector and a unit length up vector. /// The two input vectors are assumed to be unit length and not collinear. /// If these assumptions are not met use float3x3.LookRotationSafe instead. /// public static float3x3 LookRotation(float3 forward, float3 up) { float3 t = normalize(cross(up, forward)); return float3x3(t, cross(forward, t), forward); } /// /// Returns a float3x3 view rotation matrix given a forward vector and an up vector. /// The two input vectors are not assumed to be unit length. /// If the magnitude of either of the vectors is so extreme that the calculation cannot be carried out reliably or the vectors are collinear, /// the identity will be returned instead. /// public static float3x3 LookRotationSafe(float3 forward, float3 up) { float forwardLengthSq = dot(forward, forward); float upLengthSq = dot(up, up); forward *= rsqrt(forwardLengthSq); up *= rsqrt(upLengthSq); float3 t = cross(up, forward); float tLengthSq = dot(t, t); t *= rsqrt(tLengthSq); float mn = min(min(forwardLengthSq, upLengthSq), tLengthSq); float mx = max(max(forwardLengthSq, upLengthSq), tLengthSq); bool accept = mn > 1e-35f && mx < 1e35f && isfinite(forwardLengthSq) && isfinite(upLengthSq) && isfinite(tLengthSq); return float3x3( select(float3(1,0,0), t, accept), select(float3(0,1,0), cross(forward, t), accept), select(float3(0,0,1), forward, accept)); } } public partial struct float4x4 { /// Constructs a float4x4 from a float3x3 rotation matrix and a float3 translation vector. public float4x4(float3x3 rotation, float3 translation) { c0 = float4(rotation.c0, 0.0f); c1 = float4(rotation.c1, 0.0f); c2 = float4(rotation.c2, 0.0f); c3 = float4(translation, 1.0f); } /// Constructs a float4x4 from a quaternion and a float3 translation vector. public float4x4(quaternion rotation, float3 translation) { float3x3 rot = float3x3(rotation); c0 = float4(rot.c0, 0.0f); c1 = float4(rot.c1, 0.0f); c2 = float4(rot.c2, 0.0f); c3 = float4(translation, 1.0f); } /// Constructs a float4x4 from a RigidTransform. public float4x4(RigidTransform transform) { float3x3 rot = float3x3(transform.rot); c0 = float4(rot.c0, 0.0f); c1 = float4(rot.c1, 0.0f); c2 = float4(rot.c2, 0.0f); c3 = float4(transform.pos, 1.0f); } /// /// Returns a float4x4 matrix representing a rotation around a unit axis by an angle in radians. /// The rotation direction is clockwise when looking along the rotation axis towards the origin. /// public static float4x4 AxisAngle(float3 axis, float angle) { float sina, cosa; math.sincos(angle, out sina, out cosa); float4 u = float4(axis, 0.0f); float4 u_yzx = u.yzxx; float4 u_zxy = u.zxyx; float4 u_inv_cosa = u - u * cosa; // u * (1.0f - cosa); float4 t = float4(u.xyz * sina, cosa); uint4 ppnp = uint4(0x00000000, 0x00000000, 0x80000000, 0x00000000); uint4 nppp = uint4(0x80000000, 0x00000000, 0x00000000, 0x00000000); uint4 pnpp = uint4(0x00000000, 0x80000000, 0x00000000, 0x00000000); uint4 mask = uint4(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000); return float4x4( u.x * u_inv_cosa + asfloat((asuint(t.wzyx) ^ ppnp) & mask), u.y * u_inv_cosa + asfloat((asuint(t.zwxx) ^ nppp) & mask), u.z * u_inv_cosa + asfloat((asuint(t.yxwx) ^ pnpp) & mask), float4(0.0f, 0.0f, 0.0f, 1.0f) ); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the x-axis, then the y-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float4x4 EulerXYZ(float3 xyz) { // return mul(rotateZ(xyz.z), mul(rotateY(xyz.y), rotateX(xyz.x))); float3 s, c; sincos(xyz, out s, out c); return float4x4( c.y * c.z, c.z * s.x * s.y - c.x * s.z, c.x * c.z * s.y + s.x * s.z, 0.0f, c.y * s.z, c.x * c.z + s.x * s.y * s.z, c.x * s.y * s.z - c.z * s.x, 0.0f, -s.y, c.y * s.x, c.x * c.y, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the x-axis, then the z-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float4x4 EulerXZY(float3 xyz) { // return mul(rotateY(xyz.y), mul(rotateZ(xyz.z), rotateX(xyz.x))); } float3 s, c; sincos(xyz, out s, out c); return float4x4( c.y * c.z, s.x * s.y - c.x * c.y * s.z, c.x * s.y + c.y * s.x * s.z, 0.0f, s.z, c.x * c.z, -c.z * s.x, 0.0f, -c.z * s.y, c.y * s.x + c.x * s.y * s.z, c.x * c.y - s.x * s.y * s.z, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the y-axis, then the x-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float4x4 EulerYXZ(float3 xyz) { // return mul(rotateZ(xyz.z), mul(rotateX(xyz.x), rotateY(xyz.y))); float3 s, c; sincos(xyz, out s, out c); return float4x4( c.y * c.z - s.x * s.y * s.z, -c.x * s.z, c.z * s.y + c.y * s.x * s.z, 0.0f, c.z * s.x * s.y + c.y * s.z, c.x * c.z, s.y * s.z - c.y * c.z * s.x, 0.0f, -c.x * s.y, s.x, c.x * c.y, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the y-axis, then the z-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float4x4 EulerYZX(float3 xyz) { // return mul(rotateX(xyz.x), mul(rotateZ(xyz.z), rotateY(xyz.y))); float3 s, c; sincos(xyz, out s, out c); return float4x4( c.y * c.z, -s.z, c.z * s.y, 0.0f, s.x * s.y + c.x * c.y * s.z, c.x * c.z, c.x * s.y * s.z - c.y * s.x, 0.0f, c.y * s.x * s.z - c.x * s.y, c.z * s.x, c.x * c.y + s.x * s.y * s.z, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the z-axis, then the x-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// This is the default order rotation order in Unity. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float4x4 EulerZXY(float3 xyz) { // return mul(rotateY(xyz.y), mul(rotateX(xyz.x), rotateZ(xyz.z))); float3 s, c; sincos(xyz, out s, out c); return float4x4( c.y * c.z + s.x * s.y * s.z, c.z * s.x * s.y - c.y * s.z, c.x * s.y, 0.0f, c.x * s.z, c.x * c.z, -s.x, 0.0f, c.y * s.x * s.z - c.z * s.y, c.y * c.z * s.x + s.y * s.z, c.x * c.y, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the z-axis, then the y-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// A float3 vector containing the rotation angles around the x-, y- and z-axis measures in radians. public static float4x4 EulerZYX(float3 xyz) { // return mul(rotateX(xyz.x), mul(rotateY(xyz.y), rotateZ(xyz.z))); float3 s, c; sincos(xyz, out s, out c); return float4x4( c.y * c.z, -c.y * s.z, s.y, 0.0f, c.z * s.x * s.y + c.x * s.z, c.x * c.z - s.x * s.y * s.z, -c.y * s.x, 0.0f, s.x * s.z - c.x * c.z * s.y, c.z * s.x + c.x * s.y * s.z, c.x * c.y, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the x-axis, then the y-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float4x4 EulerXYZ(float x, float y, float z) { return EulerXYZ(float3(x, y, z)); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the x-axis, then the z-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float4x4 EulerXZY(float x, float y, float z) { return EulerXZY(float3(x, y, z)); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the y-axis, then the x-axis and finally the z-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float4x4 EulerYXZ(float x, float y, float z) { return EulerYXZ(float3(x, y, z)); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the y-axis, then the z-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float4x4 EulerYZX(float x, float y, float z) { return EulerYZX(float3(x, y, z)); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the z-axis, then the x-axis and finally the y-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// This is the default order rotation order in Unity. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float4x4 EulerZXY(float x, float y, float z) { return EulerZXY(float3(x, y, z)); } /// /// Returns a float4x4 rotation matrix constructed by first performing a rotation around the z-axis, then the y-axis and finally the x-axis. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float4x4 EulerZYX(float x, float y, float z) { return EulerZYX(float3(x, y, z)); } public static float4x4 Euler(float3 xyz, RotationOrder order = RotationOrder.Default) { switch (order) { case RotationOrder.XYZ: return EulerXYZ(xyz); case RotationOrder.XZY: return EulerXZY(xyz); case RotationOrder.YXZ: return EulerYXZ(xyz); case RotationOrder.YZX: return EulerYZX(xyz); case RotationOrder.ZXY: return EulerZXY(xyz); case RotationOrder.ZYX: return EulerZYX(xyz); default: return float4x4.identity; } } /// /// Returns a float4x4 rotation matrix constructed by first performing 3 rotations around the principal axes in a given order. /// All rotation angles are in radians and clockwise when looking along the rotation axis towards the origin. /// When the rotation order is known at compile time, it is recommended for performance reasons to use specific /// Euler rotation constructors such as EulerZXY(...). /// /// The rotation angle around the x-axis in radians. /// The rotation angle around the y-axis in radians. /// The rotation angle around the z-axis in radians. /// The order in which the rotations are applied. [MethodImpl(MethodImplOptions.AggressiveInlining)] public static float4x4 Euler(float x, float y, float z, RotationOrder order = RotationOrder.Default) { return Euler(float3(x, y, z), order); } /// Returns a float4x4 matrix that rotates around the x-axis by a given number of radians. /// The clockwise rotation angle when looking along the x-axis towards the origin in radians. public static float4x4 RotateX(float angle) { // {{1, 0, 0}, {0, c_0, -s_0}, {0, s_0, c_0}} float s, c; sincos(angle, out s, out c); return float4x4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, c, -s, 0.0f, 0.0f, s, c, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } /// Returns a float4x4 matrix that rotates around the y-axis by a given number of radians. /// The clockwise rotation angle when looking along the y-axis towards the origin in radians. public static float4x4 RotateY(float angle) { // {{c_1, 0, s_1}, {0, 1, 0}, {-s_1, 0, c_1}} float s, c; sincos(angle, out s, out c); return float4x4(c, 0.0f, s, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -s, 0.0f, c, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } /// Returns a float4x4 matrix that rotates around the z-axis by a given number of radians. /// The clockwise rotation angle when looking along the z-axis towards the origin in radians. public static float4x4 RotateZ(float angle) { // {{c_2, -s_2, 0}, {s_2, c_2, 0}, {0, 0, 1}} float s, c; sincos(angle, out s, out c); return float4x4(c, -s, 0.0f, 0.0f, s, c, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } /// Returns a float4x4 scale matrix given 3 axis scales. public static float4x4 Scale(float s) { return float4x4(s, 0.0f, 0.0f, 0.0f, 0.0f, s, 0.0f, 0.0f, 0.0f, 0.0f, s, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } /// Returns a float4x4 scale matrix given a float3 vector containing the 3 axis scales. public static float4x4 Scale(float x, float y, float z) { return float4x4(x, 0.0f, 0.0f, 0.0f, 0.0f, y, 0.0f, 0.0f, 0.0f, 0.0f, z, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); } /// Returns a float4x4 scale matrix given a float3 vector containing the 3 axis scales. public static float4x4 Scale(float3 scales) { return Scale(scales.x, scales.y, scales.z); } /// Returns a float4x4 translation matrix given a float3 translation vector. public static float4x4 Translate(float3 vector) { return float4x4(float4(1.0f, 0.0f, 0.0f, 0.0f), float4(0.0f, 1.0f, 0.0f, 0.0f), float4(0.0f, 0.0f, 1.0f, 0.0f), float4(vector.x, vector.y, vector.z, 1.0f)); } /// /// Returns a float4x4 view matrix given an eye position, a target point and a unit length up vector. /// The up vector is assumed to be unit length, the eye and target points are assumed to be distinct and /// the vector between them is assumes to be collinear with the up vector. /// If these assumptions are not met use float4x4.LookRotationSafe instead. /// public static float4x4 LookAt(float3 eye, float3 target, float3 up) { float3x3 rot = float3x3.LookRotation(normalize(target - eye), up); float4x4 matrix; matrix.c0 = float4(rot.c0, 0.0F); matrix.c1 = float4(rot.c1, 0.0F); matrix.c2 = float4(rot.c2, 0.0F); matrix.c3 = float4(eye, 1.0F); return matrix; } /// /// Returns a float4x4 centered orthographic projection matrix. /// /// The width of the view volume. /// The height of the view volume. /// The distance to the near plane. /// The distance to the far plane. public static float4x4 Ortho(float width, float height, float near, float far) { float rcpdx = 1.0f / width; float rcpdy = 1.0f / height; float rcpdz = 1.0f / (far - near); return float4x4( 2.0f * rcpdx, 0.0f, 0.0f, 0.0f, 0.0f, 2.0f * rcpdy, 0.0f, 0.0f, 0.0f, 0.0f, -2.0f * rcpdz, -(far + near) * rcpdz, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 off-center orthographic projection matrix. /// /// The minimum x-coordinate of the view volume. /// The maximum x-coordinate of the view volume. /// The minimum y-coordinate of the view volume. /// The minimum y-coordinate of the view volume. /// The distance to the near plane. /// The distance to the far plane. public static float4x4 OrthoOffCenter(float left, float right, float bottom, float top, float near, float far) { float rcpdx = 1.0f / (right - left); float rcpdy = 1.0f / (top - bottom); float rcpdz = 1.0f / (far - near); return float4x4( 2.0f * rcpdx, 0.0f, 0.0f, -(right + left) * rcpdx, 0.0f, 2.0f * rcpdy, 0.0f, -(top + bottom) * rcpdy, 0.0f, 0.0f, -2.0f * rcpdz, -(far + near) * rcpdz, 0.0f, 0.0f, 0.0f, 1.0f ); } /// /// Returns a float4x4 perspective projection matrix based on field of view. /// /// Vertical Field of view in radians. /// X:Y aspect ratio. /// Distance to near plane. Must be greater than zero. /// Distance to far plane. Must be greater than zero. public static float4x4 PerspectiveFov(float verticalFov, float aspect, float near, float far) { float cotangent = 1.0f / tan(verticalFov * 0.5f); float rcpdz = 1.0f / (near - far); return float4x4( cotangent / aspect, 0.0f, 0.0f, 0.0f, 0.0f, cotangent, 0.0f, 0.0f, 0.0f, 0.0f, (far + near) * rcpdz, 2.0f * near * far * rcpdz, 0.0f, 0.0f, -1.0f, 0.0f ); } /// /// Returns a float4x4 off-center perspective projection matrix. /// /// The x-coordinate of the left side of the clipping frustum at the near plane. /// The x-coordinate of the right side of the clipping frustum at the near plane. /// The y-coordinate of the bottom side of the clipping frustum at the near plane. /// The y-coordinate of the top side of the clipping frustum at the near plane. /// Distance to the near plane. Must be greater than zero. /// Distance to the far plane. Must be greater than zero. public static float4x4 PerspectiveOffCenter(float left, float right, float bottom, float top, float near, float far) { float rcpdz = 1.0f / (near - far); float rcpWidth = 1.0f / (right - left); float rcpHeight = 1.0f / (top - bottom); return float4x4( 2.0f * near * rcpWidth, 0.0f, (left + right) * rcpWidth, 0.0f, 0.0f, 2.0f * near * rcpHeight, (bottom + top) * rcpHeight, 0.0f, 0.0f, 0.0f, (far + near) * rcpdz, 2.0f * near * far * rcpdz, 0.0f, 0.0f, -1.0f, 0.0f ); } /// /// Returns a float4x4 matrix representing a combined scale-, rotation- and translation transform. /// Equivalent to mul(translationTransform, mul(rotationTransform, scaleTransform)). /// public static float4x4 TRS(float3 translation, quaternion rotation, float3 scale) { float3x3 r = float3x3(rotation); return float4x4( float4(r.c0 * scale.x, 0.0f), float4(r.c1 * scale.y, 0.0f), float4(r.c2 * scale.z, 0.0f), float4(translation, 1.0f)); } } partial class math { /// Returns a float3x3 matrix constructed from a quaternion. public static float3x3 float3x3(quaternion rotation) { return new float3x3(rotation); } /// Returns a float4x4 constructed from a float3x3 rotation matrix and a float3 translation vector. public static float4x4 float4x4(float3x3 rotation, float3 translation) { return new float4x4(rotation, translation); } /// Returns a float4x4 constructed from a quaternion and a float3 translation vector. public static float4x4 float4x4(quaternion rotation, float3 translation) { return new float4x4(rotation, translation); } /// Returns a float4x4 constructed from a RigidTransform. public static float4x4 float4x4(RigidTransform transform) { return new float4x4(transform); } /// Returns an orthonormalized version of a float3x3 matrix. public static float3x3 orthonormalize(float3x3 i) { float3x3 o; float3 u = i.c0; float3 v = i.c1 - i.c0 * math.dot(i.c1, i.c0); float lenU = math.length(u); float lenV = math.length(v); bool c = lenU > 1e-30f && lenV > 1e-30f; o.c0 = math.select(float3(1, 0, 0), u / lenU, c); o.c1 = math.select(float3(0, 1, 0), v / lenV, c); o.c2 = math.cross(o.c0, o.c1); return o; } } }