PO/Library/PackageCache/com.unity.2d.animation@5.0.7/Runtime/Triangle/Tools/QualityMeasure.cs

543 lines
16 KiB
C#

// -----------------------------------------------------------------------
// <copyright file="QualityMeasure.cs" company="">
// Original Matlab code by John Burkardt, Florida State University
// Triangle.NET code by Christian Woltering, http://triangle.codeplex.com/
// </copyright>
// -----------------------------------------------------------------------
namespace UnityEngine.U2D.Animation.TriangleNet
.Tools
{
using System;
using Animation.TriangleNet.Geometry;
/// <summary>
/// Provides mesh quality information.
/// </summary>
/// <remarks>
/// Given a triangle abc with points A (ax, ay), B (bx, by), C (cx, cy).
///
/// The side lengths are given as
/// a = sqrt((cx - bx)^2 + (cy - by)^2) -- side BC opposite of A
/// b = sqrt((cx - ax)^2 + (cy - ay)^2) -- side CA opposite of B
/// c = sqrt((ax - bx)^2 + (ay - by)^2) -- side AB opposite of C
///
/// The angles are given as
/// ang_a = acos((b^2 + c^2 - a^2) / (2 * b * c)) -- angle at A
/// ang_b = acos((c^2 + a^2 - b^2) / (2 * c * a)) -- angle at B
/// ang_c = acos((a^2 + b^2 - c^2) / (2 * a * b)) -- angle at C
///
/// The semiperimeter is given as
/// s = (a + b + c) / 2
///
/// The area is given as
/// D = abs(ax * (by - cy) + bx * (cy - ay) + cx * (ay - by)) / 2
/// = sqrt(s * (s - a) * (s - b) * (s - c))
///
/// The inradius is given as
/// r = D / s
///
/// The circumradius is given as
/// R = a * b * c / (4 * D)
///
/// The altitudes are given as
/// alt_a = 2 * D / a -- altitude above side a
/// alt_b = 2 * D / b -- altitude above side b
/// alt_c = 2 * D / c -- altitude above side c
///
/// The aspect ratio may be given as the ratio of the longest to the
/// shortest edge or, more commonly as the ratio of the circumradius
/// to twice the inradius
/// ar = R / (2 * r)
/// = a * b * c / (8 * (s - a) * (s - b) * (s - c))
/// = a * b * c / ((b + c - a) * (c + a - b) * (a + b - c))
/// </remarks>
internal class QualityMeasure
{
AreaMeasure areaMeasure;
AlphaMeasure alphaMeasure;
Q_Measure qMeasure;
Mesh mesh;
public QualityMeasure()
{
areaMeasure = new AreaMeasure();
alphaMeasure = new AlphaMeasure();
qMeasure = new Q_Measure();
}
#region Public properties
/// <summary>
/// Minimum triangle area.
/// </summary>
public double AreaMinimum
{
get { return areaMeasure.area_min; }
}
/// <summary>
/// Maximum triangle area.
/// </summary>
public double AreaMaximum
{
get { return areaMeasure.area_max; }
}
/// <summary>
/// Ratio of maximum and minimum triangle area.
/// </summary>
public double AreaRatio
{
get { return areaMeasure.area_max / areaMeasure.area_min; }
}
/// <summary>
/// Smallest angle.
/// </summary>
public double AlphaMinimum
{
get { return alphaMeasure.alpha_min; }
}
/// <summary>
/// Maximum smallest angle.
/// </summary>
public double AlphaMaximum
{
get { return alphaMeasure.alpha_max; }
}
/// <summary>
/// Average angle.
/// </summary>
public double AlphaAverage
{
get { return alphaMeasure.alpha_ave; }
}
/// <summary>
/// Average angle weighted by area.
/// </summary>
public double AlphaArea
{
get { return alphaMeasure.alpha_area; }
}
/// <summary>
/// Smallest aspect ratio.
/// </summary>
public double Q_Minimum
{
get { return qMeasure.q_min; }
}
/// <summary>
/// Largest aspect ratio.
/// </summary>
public double Q_Maximum
{
get { return qMeasure.q_max; }
}
/// <summary>
/// Average aspect ratio.
/// </summary>
public double Q_Average
{
get { return qMeasure.q_ave; }
}
/// <summary>
/// Average aspect ratio weighted by area.
/// </summary>
public double Q_Area
{
get { return qMeasure.q_area; }
}
#endregion
public void Update(Mesh mesh)
{
this.mesh = mesh;
// Reset all measures.
areaMeasure.Reset();
alphaMeasure.Reset();
qMeasure.Reset();
Compute();
}
private void Compute()
{
Point a, b, c;
double ab, bc, ca;
double lx, ly;
double area;
int n = 0;
foreach (var tri in mesh.triangles)
{
n++;
a = tri.vertices[0];
b = tri.vertices[1];
c = tri.vertices[2];
lx = a.x - b.x;
ly = a.y - b.y;
ab = Math.Sqrt(lx * lx + ly * ly);
lx = b.x - c.x;
ly = b.y - c.y;
bc = Math.Sqrt(lx * lx + ly * ly);
lx = c.x - a.x;
ly = c.y - a.y;
ca = Math.Sqrt(lx * lx + ly * ly);
area = areaMeasure.Measure(a, b, c);
alphaMeasure.Measure(ab, bc, ca, area);
qMeasure.Measure(ab, bc, ca, area);
}
// Normalize measures
alphaMeasure.Normalize(n, areaMeasure.area_total);
qMeasure.Normalize(n, areaMeasure.area_total);
}
/// <summary>
/// Determines the bandwidth of the coefficient matrix.
/// </summary>
/// <returns>Bandwidth of the coefficient matrix.</returns>
/// <remarks>
/// The quantity computed here is the "geometric" bandwidth determined
/// by the finite element mesh alone.
///
/// If a single finite element variable is associated with each node
/// of the mesh, and if the nodes and variables are numbered in the
/// same way, then the geometric bandwidth is the same as the bandwidth
/// of a typical finite element matrix.
///
/// The bandwidth M is defined in terms of the lower and upper bandwidths:
///
/// M = ML + 1 + MU
///
/// where
///
/// ML = maximum distance from any diagonal label to a nonzero
/// label in the same row, but earlier column,
///
/// MU = maximum distance from any diagonal label to a nonzero
/// label in the same row, but later column.
///
/// Because the finite element node adjacency relationship is symmetric,
/// we are guaranteed that ML = MU.
/// </remarks>
public int Bandwidth()
{
if (mesh == null) return 0;
// Lower and upper bandwidth of the matrix
int ml = 0, mu = 0;
int gi, gj;
foreach (var tri in mesh.triangles)
{
for (int j = 0; j < 3; j++)
{
gi = tri.GetVertex(j).id;
for (int k = 0; k < 3; k++)
{
gj = tri.GetVertex(k).id;
mu = Math.Max(mu, gj - gi);
ml = Math.Max(ml, gi - gj);
}
}
}
return ml + 1 + mu;
}
class AreaMeasure
{
// Minimum area
public double area_min = double.MaxValue;
// Maximum area
public double area_max = -double.MaxValue;
// Total area of geometry
public double area_total = 0;
// Nmber of triangles with zero area
public int area_zero = 0;
/// <summary>
/// Reset all values.
/// </summary>
public void Reset()
{
area_min = double.MaxValue;
area_max = -double.MaxValue;
area_total = 0;
area_zero = 0;
}
/// <summary>
/// Compute the area of given triangle.
/// </summary>
/// <param name="a">Triangle corner a.</param>
/// <param name="b">Triangle corner b.</param>
/// <param name="c">Triangle corner c.</param>
/// <returns>Triangle area.</returns>
public double Measure(Point a, Point b, Point c)
{
double area = 0.5 * Math.Abs(a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y));
area_min = Math.Min(area_min, area);
area_max = Math.Max(area_max, area);
area_total += area;
if (area == 0.0)
{
area_zero = area_zero + 1;
}
return area;
}
}
/// <summary>
/// The alpha measure determines the triangulated pointset quality.
/// </summary>
/// <remarks>
/// The alpha measure evaluates the uniformity of the shapes of the triangles
/// defined by a triangulated pointset.
///
/// We compute the minimum angle among all the triangles in the triangulated
/// dataset and divide by the maximum possible value (which, in degrees,
/// is 60). The best possible value is 1, and the worst 0. A good
/// triangulation should have an alpha score close to 1.
/// </remarks>
class AlphaMeasure
{
// Minimum value over all triangles
public double alpha_min;
// Maximum value over all triangles
public double alpha_max;
// Value averaged over all triangles
public double alpha_ave;
// Value averaged over all triangles and weighted by area
public double alpha_area;
/// <summary>
/// Reset all values.
/// </summary>
public void Reset()
{
alpha_min = double.MaxValue;
alpha_max = -double.MaxValue;
alpha_ave = 0;
alpha_area = 0;
}
double acos(double c)
{
if (c <= -1.0)
{
return Math.PI;
}
else if (1.0 <= c)
{
return 0.0;
}
else
{
return Math.Acos(c);
}
}
/// <summary>
/// Compute q value of given triangle.
/// </summary>
/// <param name="ab">Side length ab.</param>
/// <param name="bc">Side length bc.</param>
/// <param name="ca">Side length ca.</param>
/// <param name="area">Triangle area.</param>
/// <returns></returns>
public double Measure(double ab, double bc, double ca, double area)
{
double alpha = double.MaxValue;
double ab2 = ab * ab;
double bc2 = bc * bc;
double ca2 = ca * ca;
double a_angle;
double b_angle;
double c_angle;
// Take care of a ridiculous special case.
if (ab == 0.0 && bc == 0.0 && ca == 0.0)
{
a_angle = 2.0 * Math.PI / 3.0;
b_angle = 2.0 * Math.PI / 3.0;
c_angle = 2.0 * Math.PI / 3.0;
}
else
{
if (ca == 0.0 || ab == 0.0)
{
a_angle = Math.PI;
}
else
{
a_angle = acos((ca2 + ab2 - bc2) / (2.0 * ca * ab));
}
if (ab == 0.0 || bc == 0.0)
{
b_angle = Math.PI;
}
else
{
b_angle = acos((ab2 + bc2 - ca2) / (2.0 * ab * bc));
}
if (bc == 0.0 || ca == 0.0)
{
c_angle = Math.PI;
}
else
{
c_angle = acos((bc2 + ca2 - ab2) / (2.0 * bc * ca));
}
}
alpha = Math.Min(alpha, a_angle);
alpha = Math.Min(alpha, b_angle);
alpha = Math.Min(alpha, c_angle);
// Normalize angle from [0,pi/3] radians into qualities in [0,1].
alpha = alpha * 3.0 / Math.PI;
alpha_ave += alpha;
alpha_area += area * alpha;
alpha_min = Math.Min(alpha, alpha_min);
alpha_max = Math.Max(alpha, alpha_max);
return alpha;
}
/// <summary>
/// Normalize values.
/// </summary>
public void Normalize(int n, double area_total)
{
if (n > 0)
{
alpha_ave /= n;
}
else
{
alpha_ave = 0.0;
}
if (0.0 < area_total)
{
alpha_area /= area_total;
}
else
{
alpha_area = 0.0;
}
}
}
/// <summary>
/// The Q measure determines the triangulated pointset quality.
/// </summary>
/// <remarks>
/// The Q measure evaluates the uniformity of the shapes of the triangles
/// defined by a triangulated pointset. It uses the aspect ratio
///
/// 2 * (incircle radius) / (circumcircle radius)
///
/// In an ideally regular mesh, all triangles would have the same
/// equilateral shape, for which Q = 1. A good mesh would have
/// 0.5 &lt; Q.
/// </remarks>
class Q_Measure
{
// Minimum value over all triangles
public double q_min;
// Maximum value over all triangles
public double q_max;
// Average value
public double q_ave;
// Average value weighted by the area of each triangle
public double q_area;
/// <summary>
/// Reset all values.
/// </summary>
public void Reset()
{
q_min = double.MaxValue;
q_max = -double.MaxValue;
q_ave = 0;
q_area = 0;
}
/// <summary>
/// Compute q value of given triangle.
/// </summary>
/// <param name="ab">Side length ab.</param>
/// <param name="bc">Side length bc.</param>
/// <param name="ca">Side length ca.</param>
/// <param name="area">Triangle area.</param>
/// <returns></returns>
public double Measure(double ab, double bc, double ca, double area)
{
double q = (bc + ca - ab) * (ca + ab - bc) * (ab + bc - ca) / (ab * bc * ca);
q_min = Math.Min(q_min, q);
q_max = Math.Max(q_max, q);
q_ave += q;
q_area += q * area;
return q;
}
/// <summary>
/// Normalize values.
/// </summary>
public void Normalize(int n, double area_total)
{
if (n > 0)
{
q_ave /= n;
}
else
{
q_ave = 0.0;
}
if (area_total > 0.0)
{
q_area /= area_total;
}
else
{
q_area = 0.0;
}
}
}
}
}